These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Abbassi F; Galanth C; Amiche M; Saito K; Piesse C; Zargarian L; Hani K; Nicolas P; Lequin O; Ladram A Biochemistry; 2008 Oct; 47(40):10513-25. PubMed ID: 18795798 [TBL] [Abstract][Full Text] [Related]
3. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin. Bandyopadhyay S; Ng BY; Chong C; Lim MZ; Gill SK; Lee KH; Sivaraman J; Chatterjee C J Pept Sci; 2014 Oct; 20(10):811-21. PubMed ID: 25044683 [TBL] [Abstract][Full Text] [Related]
4. Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Glattard E; Salnikov ES; Aisenbrey C; Bechinger B Biophys Chem; 2016 Mar; 210():35-44. PubMed ID: 26099623 [TBL] [Abstract][Full Text] [Related]
5. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. Park S; Park SH; Ahn HC; Kim S; Kim SS; Lee BJ; Lee BJ FEBS Lett; 2001 Oct; 507(1):95-100. PubMed ID: 11682065 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and antimicrobial activity of truncated fragments and analogs of citropin 1.1: The solution structure of the SDS micelle-bound citropin-like peptides. Sikorska E; Greber K; Rodziewicz-Motowidło S; Szultka L; Lukasiak J; Kamysz W J Struct Biol; 2009 Nov; 168(2):250-8. PubMed ID: 19616100 [TBL] [Abstract][Full Text] [Related]
7. Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Strandberg E; Tremouilhac P; Wadhwani P; Ulrich AS Biochim Biophys Acta; 2009 Aug; 1788(8):1667-79. PubMed ID: 19272296 [TBL] [Abstract][Full Text] [Related]
8. Development of potent anti-infective agents from Silurana tropicalis: conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. Subasinghage AP; Conlon JM; Hewage CM Biochim Biophys Acta; 2010 Apr; 1804(4):1020-8. PubMed ID: 20116461 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. Gesell J; Zasloff M; Opella SJ J Biomol NMR; 1997 Feb; 9(2):127-35. PubMed ID: 9090128 [TBL] [Abstract][Full Text] [Related]
10. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. Sani MA; Le Brun AP; Separovic F Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183204. PubMed ID: 31981588 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
12. NMR structure and binding of esculentin-1a (1-21)NH2 and its diastereomer to lipopolysaccharide: Correlation with biological functions. Ghosh A; Bera S; Shai Y; Mangoni ML; Bhunia A Biochim Biophys Acta; 2016 Apr; 1858(4):800-12. PubMed ID: 26724203 [TBL] [Abstract][Full Text] [Related]
13. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Balla MS; Bowie JH; Separovic F Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211 [TBL] [Abstract][Full Text] [Related]
14. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. Zerweck J; Strandberg E; Bürck J; Reichert J; Wadhwani P; Kukharenko O; Ulrich AS Eur Biophys J; 2016 Sep; 45(6):535-47. PubMed ID: 27052218 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Zerweck J; Strandberg E; Kukharenko O; Reichert J; Bürck J; Wadhwani P; Ulrich AS Sci Rep; 2017 Oct; 7(1):13153. PubMed ID: 29030606 [TBL] [Abstract][Full Text] [Related]
16. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718 [TBL] [Abstract][Full Text] [Related]
17. Magainin 2-PGLa Interactions in Membranes - Two Peptides that Exhibit Synergistic Enhancement of Antimicrobial Activity. Marquette A; Salnikov ES; Glattard E; Aisenbrey C; Bechinger B Curr Top Med Chem; 2016; 16(1):65-75. PubMed ID: 26139118 [TBL] [Abstract][Full Text] [Related]
18. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Wieprecht T; Apostolov O; Beyermann M; Seelig J Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006 [TBL] [Abstract][Full Text] [Related]
19. Folded structure and insertion depth of the frog-skin antimicrobial Peptide esculentin-1b(1-18) in the presence of differently charged membrane-mimicking micelles. Manzo G; Casu M; Rinaldi AC; Montaldo NP; Luganini A; Gribaudo G; Scorciapino MA J Nat Prod; 2014 Nov; 77(11):2410-7. PubMed ID: 25337981 [TBL] [Abstract][Full Text] [Related]
20. Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance (13)C NMR spectroscopy. Wang G Biochim Biophys Acta; 2010 Feb; 1798(2):114-21. PubMed ID: 19682427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]