BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 192726)

  • 1. Ca2+-dependent effect of ATP on spin-labeled sarcoplasmic reticulum.
    Coan CR; Inesi G
    J Biol Chem; 1977 May; 252(9):3044-9. PubMed ID: 192726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ regulation of conformational states in the transport cycle of spin-labeled sarcoplasmic reticulum ATPase.
    Coan C; Verjovski-Almeida S; Inesi G
    J Biol Chem; 1979 Apr; 254(8):2968-74. PubMed ID: 218959
    [No Abstract]   [Full Text] [Related]  

  • 4. Reactivity of sarcoplasmic reticulum adenosinetriphosphatase with iodoacetamide spin-label: evidence for two conformational states of the substrate binding sites.
    Coan C; Keating S
    Biochemistry; 1982 Jun; 21(13):3214-20. PubMed ID: 6213264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of spin-labeled sarcoplasmic reticulum to the phosphorylation state of the catalytic site in aqueous media and in dimethyl sulfoxide.
    Coan C
    Biochemistry; 1983 Dec; 22(25):5826-36. PubMed ID: 6318804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand-induced changes in the relative reactivities of certain sulfhydryl groups.
    Champeil P; Büschlen-Boucly S; Bastide F; Gary-Bobo C
    J Biol Chem; 1978 Feb; 253(4):1179-86. PubMed ID: 203584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligovanadate binding to sarcoplasmic reticulum ATPase. Evidence for substrate analogue behavior.
    Coan C; Scales DJ; Murphy AJ
    J Biol Chem; 1986 Aug; 261(22):10394-403. PubMed ID: 3015927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of spin-labeled nucleotides with sarcoplasmic reticulum adenosinetriphosphatase.
    Oliveira CR; Coan C; Verjovski-Almeida S
    Biochemistry; 1988 Aug; 27(16):5923-7. PubMed ID: 2973348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent effect of acetylphosphate on spin-labeled sarcoplasmic reticulum.
    Coan CR; Inesi G
    Biochem Biophys Res Commun; 1976 Aug; 71(4):1283-8. PubMed ID: 184786
    [No Abstract]   [Full Text] [Related]  

  • 11. Conformational transitions of the sarcoplasmic reticulum Ca-ATPase studied by time-resolved EPR and quenched-flow kinetics.
    Mahaney JE; Froehlich JP; Thomas DD
    Biochemistry; 1995 Apr; 34(14):4864-79. PubMed ID: 7718593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-labeling of adenosine triphosphatase in sarcoplasmic reticulum membrane and change in the state of the spin labels induced by deoxycholate.
    Nakamura H
    J Biochem; 1977 Oct; 82(4):923-30. PubMed ID: 200608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ionic conditions, temperature, and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. A comparison of the fluorescnece and electron spin resonance spectra of the spin-labeled enzyme.
    Seidel JC
    J Biol Chem; 1975 Jul; 250(14):5681-7. PubMed ID: 237927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide-binding sites in the functional unit of sarcoplasmic reticulum Ca2+-ATPase as studied by photoaffinity spin-labeled 2-N3-SL-ATP.
    Palm T; Coan C; Trommer WE
    Biol Chem; 2001 Mar; 382(3):417-23. PubMed ID: 11347889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change.
    Yasuoka-Yabe K; Kawakita M
    J Biochem; 1983 Sep; 94(3):665-75. PubMed ID: 6139370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate for studies of nucleotide interaction with sarcoplasmic reticulum vesicles.
    Watanabe T; Inesi G
    J Biol Chem; 1982 Oct; 257(19):11510-6. PubMed ID: 6214553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2(+)-dependent conformational change of the ATP-binding site of Ca2(+)-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal.
    Yamamoto H; Imamura Y; Tagaya M; Fukui T; Kawakita M
    J Biochem; 1989 Dec; 106(6):1121-5. PubMed ID: 2534125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolved conformational states of spin-labeled Ca-ATPase during the enzymatic cycle.
    Lewis SM; Thomas DD
    Biochemistry; 1992 Aug; 31(32):7381-9. PubMed ID: 1324712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replaced membranes.
    Hidalgo C; Ikemoto N; Gergely J
    J Biol Chem; 1976 Jul; 251(14):4224-32. PubMed ID: 180020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spin-label study of the effects of drugs on calcium release from isolated sarcoplasmic reticulum vesicles.
    Takishima K; Shimizu H; Setaka M; Kwan T
    J Biochem; 1980 Jan; 87(1):305-12. PubMed ID: 6244262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.