These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1927269)

  • 21. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions.
    Kreger AS; Molgó J; Comella JX; Hansson B; Thesleff S
    Toxicon; 1993 Mar; 31(3):307-17. PubMed ID: 8470134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in the Torpedo electric organ.
    Dunant Y; Loctin F; Marsal J; Muller D; Parducz A; Rabasseda X
    J Neurochem; 1988 Feb; 50(2):431-9. PubMed ID: 3121792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural regulation of muscle acetylcholinesterase is exerted on the level of its mRNA.
    Cresnar B; Crne-Finderle N; Breskvar K; Sketelj J
    J Neurosci Res; 1994 Jun; 38(3):294-9. PubMed ID: 7932864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.
    Malomouzh AI; Petrov KA; Nurullin LF; Nikolsky EE
    J Neurochem; 2015 Dec; 135(6):1149-60. PubMed ID: 26403151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle.
    Bambrick L; Gordon T
    J Physiol; 1987 Jan; 382():69-86. PubMed ID: 2442368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures.
    Liou JC; Chen YH; Fu WM
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):721-30. PubMed ID: 10358113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity.
    Gupta RC; Milatovic D; Dettbarn WD
    Arch Toxicol; 2002 Dec; 76(12):715-26. PubMed ID: 12451448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motor end-plates in regenerating rat skeletal muscle exposed to botulinum toxin.
    Jirmanová I; Thesleff S
    Neuroscience; 1976 Aug; 1(4):345-7. PubMed ID: 11370519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Release of packets of acetylcholine and synaptic vesicle elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin.
    Pumplin DW; del Castillo J
    Life Sci; 1975 Jul; 17(1):137-41. PubMed ID: 1079912
    [No Abstract]   [Full Text] [Related]  

  • 30. Consequences of axonal transport blockade by batrachotoxin on mammalian neuromuscular junction. II. Late pre- and postsynaptic changes.
    Deshpande SS; Boegman RJ; Albuquerque EX
    Brain Res; 1981 Nov; 225(1):115-29. PubMed ID: 6170390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of junctional acetylcholinesterase by neural and muscular influences in the rat.
    Lømo T; Slater CR
    J Physiol; 1980 Jun; 303():191-202. PubMed ID: 6253619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type A botulinum toxin disorganizes quantal acetylcholine release and inhibits energy metabolism.
    Dunant Y; Esquerda JE; Loctin F; Marsal J; Muller D
    J Physiol (Paris); 1990; 84(3):211-9. PubMed ID: 1963640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction.
    Kauffman JA; Way JF; Siegel LS; Sellin LC
    Toxicol Appl Pharmacol; 1985 Jun; 79(2):211-7. PubMed ID: 2988154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diisopropylphosphorofluoridate-induced cholinergic hyperactivity and lipid peroxidation.
    Yang ZP; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 May; 138(1):48-53. PubMed ID: 8658512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observations on the action of type A botulinum toxin on frog neuromuscular junctions.
    Boroff DA; del Castillo J; Evoy WH; Steinhardt RA
    J Physiol; 1974 Jul; 240(2):227-53. PubMed ID: 4371582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nature and origin of calcium-insensitive miniature end-plate potentials at rodent neuromuscular junctions.
    Lupa MT; Tabti N; Thesleff S; Vyskocil F; Yu SP
    J Physiol; 1986 Dec; 381():607-18. PubMed ID: 3625546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological effects of botulinum toxin in spasticity.
    Gracies JM
    Mov Disord; 2004 Mar; 19 Suppl 8():S120-8. PubMed ID: 15027064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction.
    Bernard V; Girard E; Hrabovska A; Camp S; Taylor P; Plaud B; Krejci E
    Mol Cell Neurosci; 2011 Jan; 46(1):272-81. PubMed ID: 20883790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decrease of the spontaneous non-quantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm.
    Dolezal V; Vyskocil F; Tucek S
    Pflugers Arch; 1983 Jun; 397(4):319-22. PubMed ID: 6889098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: its dependency on calcium.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):125-36. PubMed ID: 7965828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.