BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 19272693)

  • 1. The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor.
    Parente MP; Jorge RM; Mascarenhas T; Fernandes AA; Martins JA
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S166-9. PubMed ID: 19272693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery.
    Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA
    J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation of the pelvic floor muscles during a vaginal delivery.
    Parente MP; Jorge RM; Mascarenhas T; Fernandes AA; Martins JA
    Int Urogynecol J Pelvic Floor Dysfunct; 2008 Jan; 19(1):65-71. PubMed ID: 17522755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The management of episiotomy technique and its effect on pelvic floor muscles during a malposition childbirth.
    Oliveira DA; Parente MPL; Calvo B; Mascarenhas T; Jorge RMN
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1249-1259. PubMed ID: 28699402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery.
    Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Silva-Filho AL
    Am J Obstet Gynecol; 2010 Sep; 203(3):217.e1-6. PubMed ID: 20478549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth.
    Li X; Kruger JA; Nash MP; Nielsen PM
    J Biomech Eng; 2010 Nov; 132(11):111010. PubMed ID: 21034151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Occipito-posterior fetal head position, maternal and neonatal outcome].
    Martino V; Iliceto N; Simeoni U
    Minerva Ginecol; 2007 Aug; 59(4):459-64. PubMed ID: 17923836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery.
    Silva ME; Oliveira DA; Roza TH; Brandão S; Parente MP; Mascarenhas T; Natal Jorge RM
    J Biomech; 2015 Jun; 48(9):1600-5. PubMed ID: 25757665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantity and distribution of levator ani stretch during simulated vaginal childbirth.
    Hoyte L; Damaser MS; Warfield SK; Chukkapalli G; Majumdar A; Choi DJ; Trivedi A; Krysl P
    Am J Obstet Gynecol; 2008 Aug; 199(2):198.e1-5. PubMed ID: 18513684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical study of the birth position: a natural struggle between mother and fetus.
    Moura R; Borges M; Oliveira D; Parente M; Kimmich N; Mascarenhas T; Natal R
    Biomech Model Mechanobiol; 2022 Jun; 21(3):937-951. PubMed ID: 35384526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pelvic muscle activation during vaginal delivery.
    Parente MP; Natal Jorge RM; Mascarenhas T; Silva-Filho AL
    Obstet Gynecol; 2010 Apr; 115(4):804-808. PubMed ID: 20308842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic effects of the levator ani muscle during childbirth.
    Li X; Kruger JA; Nash MP; Nielsen PM
    Biomech Model Mechanobiol; 2011 Jul; 10(4):485-94. PubMed ID: 20734100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth.
    Oliveira DA; Parente MP; Calvo B; Mascarenhas T; Natal Jorge RM
    J Biomech; 2016 Feb; 49(4):594-601. PubMed ID: 26895779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pelvic floor function and anatomy after childbirth.
    Baytur YB; Serter S; Tarhan S; Uyar Y; Inceboz U; Pabuscu Y
    J Reprod Med; 2007 Jul; 52(7):604-10. PubMed ID: 17847758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levator ani muscle stretch induced by simulated vaginal birth.
    Lien KC; Mooney B; DeLancey JO; Ashton-Miller JA
    Obstet Gynecol; 2004 Jan; 103(1):31-40. PubMed ID: 14704241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element studies of the deformation of the pelvic floor.
    Martins JA; Pato MP; Pires EB; Jorge RM; Parente M; Mascarenhas T
    Ann N Y Acad Sci; 2007 Apr; 1101():316-34. PubMed ID: 17363435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evidence of significant levator ani muscle stretch on MR images of a live childbirth.
    Sindhwani N; Bamberg C; Famaey N; Callewaert G; Dudenhausen JW; Teichgräber U; Deprest J
    Am J Obstet Gynecol; 2017 Aug; 217(2):194.e1-194.e8. PubMed ID: 28412085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery.
    Krofta L; Havelková L; Urbánková I; Krčmář M; Hynčík L; Feyereisl J
    Int Urogynecol J; 2017 Feb; 28(2):275-284. PubMed ID: 27562467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model.
    Havelková L; Krofta L; Kochová P; Liška V; Kališ V; Feyereisl J
    Int Urogynecol J; 2020 Jul; 31(7):1315-1324. PubMed ID: 31197428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance-based female pelvic anatomy as relevant for maternal childbirth injury simulations.
    Hoyte L; Damaser MS
    Ann N Y Acad Sci; 2007 Apr; 1101():361-76. PubMed ID: 17363445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.