These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 19272700)
21. Treatment of chromite ore processing residue by pyrolysis with rice straw. Zhang D; He S; Dai L; Hu X; Wu D; Peng K; Bu G; Pang H; Kong H Chemosphere; 2009 Nov; 77(8):1143-5. PubMed ID: 19765796 [TBL] [Abstract][Full Text] [Related]
22. Influence of x-ray diffraction sample preparation on quantitative mineralogy: implications for chromate waste treatment. Dermatas D; Chrysochoou M; Pardali S; Grubb DG J Environ Qual; 2007; 36(2):487-97. PubMed ID: 17332253 [TBL] [Abstract][Full Text] [Related]
23. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Geelhoed JS; Meeussen JC; Roe MJ; Hillier S; Thomas RP; Farmer JG; Paterson E Environ Sci Technol; 2003 Jul; 37(14):3206-13. PubMed ID: 12901671 [TBL] [Abstract][Full Text] [Related]
24. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. Xu R; Wang YN; Li S; Sun Y; Gao Y; Guo L; Wang H Ecotoxicol Environ Saf; 2023 Oct; 265():115522. PubMed ID: 37769582 [TBL] [Abstract][Full Text] [Related]
25. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Matern K; Kletti H; Mansfeldt T Chemosphere; 2016 Jul; 155():188-195. PubMed ID: 27111471 [TBL] [Abstract][Full Text] [Related]
26. Impact of pyrolysis process on the chromium behavior of COPR. Zhang D; He S; Dai L; Xie Y; Wu D; Bu G; Peng K; Kong H J Hazard Mater; 2009 Dec; 172(2-3):1597-601. PubMed ID: 19765898 [TBL] [Abstract][Full Text] [Related]
27. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes. Velasco A; Ramírez M; Hernández S; Schmidt W; Revah S J Hazard Mater; 2012 Mar; 207-208():97-102. PubMed ID: 21543156 [TBL] [Abstract][Full Text] [Related]
28. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism. Li Y; Cundy AB; Feng J; Fu H; Wang X; Liu Y J Environ Manage; 2017 May; 192():100-106. PubMed ID: 28157612 [TBL] [Abstract][Full Text] [Related]
29. Hydrogarnet: a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. Hillier S; Lumsdon DG; Brydson R; Paterson E Environ Sci Technol; 2007 Mar; 41(6):1921-7. PubMed ID: 17410785 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765 [TBL] [Abstract][Full Text] [Related]
31. Leaching of hexavalent chromium from young chromite ore processing residue. Matern K; Weigand H; Kretzschmar R; Mansfeldt T J Environ Qual; 2020 May; 49(3):712-722. PubMed ID: 33016406 [TBL] [Abstract][Full Text] [Related]
32. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS Li Y; Liang J; Yang Z; Wang H; Liu Y Sci Total Environ; 2019 Mar; 658():315-323. PubMed ID: 30577025 [TBL] [Abstract][Full Text] [Related]
33. Cr(VI) reduction in aqueous solutions by siderite. Erdem M; Gür F; Tümen F J Hazard Mater; 2004 Sep; 113(1-3):217-22. PubMed ID: 15363534 [TBL] [Abstract][Full Text] [Related]
34. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil. Huang M; Ding G; Yan X; Rao P; Wang X; Meng X; Shi Q Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955077 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. Yu S; Du J; Luo T; Huang Y; Jing C J Hazard Mater; 2012 Mar; 209-210():250-5. PubMed ID: 22309656 [TBL] [Abstract][Full Text] [Related]
36. Long-term stability of FeSO Wang X; Zhang J; Wang L; Chen J; Hou H; Yang J; Lu X J Hazard Mater; 2017 Jan; 321():720-727. PubMed ID: 27701061 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of ettringite-related swelling mechanisms for treated chromite ore processing residue. Moon DH; Wazne M; Dermatas D; Sanchez AM; Cheong KH; Park JH Environ Sci Pollut Res Int; 2015 Jan; 22(1):738-44. PubMed ID: 25223355 [TBL] [Abstract][Full Text] [Related]
38. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons. Matern K; Weigand H; Singh A; Mansfeldt T Environ Sci Pollut Res Int; 2017 Feb; 24(4):3582-3592. PubMed ID: 27882493 [TBL] [Abstract][Full Text] [Related]
39. Remediation of Cr(VI)-contaminated soil mixed with chromite ore processing residue by ferrous sulfate and enzyme residue. Shi K; Zhang Y; Ding G; Wang X; Yan X; Pan H; Zhao Y Sci Total Environ; 2023 Sep; 892():164743. PubMed ID: 37302601 [TBL] [Abstract][Full Text] [Related]
40. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR). Chrysochoou M; Fakra SC; Marcus MA; Moon DH; Dermatas D Environ Sci Technol; 2009 Jul; 43(14):5461-6. PubMed ID: 19708382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]