These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19272865)

  • 1. Using the stochastic collocation method for the uncertainty quantification of drug concentration due to depot shape variability.
    Preston JS; Tasdizen T; Terry CM; Cheung AK; Kirby RM
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):609-20. PubMed ID: 19272865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty analysis of ventricular mechanics using the probabilistic collocation method.
    Osnes H; Sundnes J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2171-9. PubMed ID: 22581129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Evaluation of Cochlear Implant Surgery Outcomes Accounting for Uncertainty and Parameter Variability.
    Mangado N; Pons-Prats J; Coma M; Mistrík P; Piella G; Ceresa M; González Ballester MÁ
    Front Physiol; 2018; 9():498. PubMed ID: 29875673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion.
    Barber J; Tanase R; Yotov I
    Math Biosci; 2016 Jun; 276():133-44. PubMed ID: 27085426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems.
    Sheppard PW; Rathinam M; Khammash M
    J Chem Phys; 2012 Jan; 136(3):034115. PubMed ID: 22280752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty quantification in transcranial magnetic stimulation via high-dimensional model representation.
    Gomez LJ; Yücel AC; Hernandez-Garcia L; Taylor SF; Michielssen E
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):361-72. PubMed ID: 25203980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic modelling scheme for analysis of long-term failure of cemented femoral joint replacements.
    Galibarov PE; Prendergast PJ; Lennon AB
    Proc Inst Mech Eng H; 2012 Dec; 226(12):927-38. PubMed ID: 23636956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer.
    Kortun C; Hijazi YR; Arifler D
    J Biomed Opt; 2008; 13(3):034014. PubMed ID: 18601559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.
    Kilinc D; Demir A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):958-974. PubMed ID: 28749345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance, robustly verified Monte Carlo simulation with FullMonte.
    Cassidy J; Nouri A; Betz V; Lilge L
    J Biomed Opt; 2018 Aug; 23(8):1-11. PubMed ID: 30098135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pharmacodynamic analysis method to determine the relative importance of drug concentration and treatment time on effect.
    Millenbaugh NJ; Wientjes MG; Au JL
    Cancer Chemother Pharmacol; 2000; 45(4):265-72. PubMed ID: 10755313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined analysis of uncertainty and patient heterogeneity in medical decision models.
    Groot Koerkamp B; Stijnen T; Weinstein MC; Hunink MG
    Med Decis Making; 2011; 31(4):650-61. PubMed ID: 20974904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid stochastic simulations of intracellular reaction-diffusion systems.
    Kalantzis G
    Comput Biol Chem; 2009 Jun; 33(3):205-15. PubMed ID: 19414282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Monte Carlo Simulation to Propagate Processing Parameter Uncertainty to the Statistical Analyses of Biomechanical Trajectories.
    Pataky TC
    Motor Control; 2023 Jan; 27(1):112-122. PubMed ID: 35894912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-to-Cell Variability in Protein Expression during Viral Infection: Monte-Carlo Simulation and Validation based on Confocal Imaging
    Saxena A; Upadhyay V; Dhyani V; Jana S; Giri L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():138-141. PubMed ID: 31945863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic finite element analysis of biological systems: comparison of a simple intervertebral disc model with experimental results.
    Espino DM; Meakin JR; Hukins DW; Reid JE
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):243-8. PubMed ID: 12959758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation environment for diffusion weighted MR experiments in complex media.
    Balls GT; Frank LR
    Magn Reson Med; 2009 Sep; 62(3):771-8. PubMed ID: 19488991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis.
    Fenneteau F; Li J; Nekka F
    J Pharmacokinet Pharmacodyn; 2009 Dec; 36(6):495-522. PubMed ID: 19847628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.