These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 19272882)
1. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882 [TBL] [Abstract][Full Text] [Related]
2. Solving the ECG forward problem by means of a meshless finite element method. Li ZS; Zhu SA; He B Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567 [TBL] [Abstract][Full Text] [Related]
3. Truncated total least squares: a new regularization method for the solution of ECG inverse problems. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323 [TBL] [Abstract][Full Text] [Related]
4. A meshless method for solving the EEG forward problem. von Ellenrieder N; Muravchik CH; Nehorai A IEEE Trans Biomed Eng; 2005 Feb; 52(2):249-57. PubMed ID: 15709662 [TBL] [Abstract][Full Text] [Related]
5. Improving the accuracy of the boundary element method by the use of second-order interpolation functions. Frijns JH; de Snoo SL; Schoonhoven R IEEE Trans Biomed Eng; 2000 Oct; 47(10):1336-46. PubMed ID: 11059168 [TBL] [Abstract][Full Text] [Related]
6. The boundary element method in the forward and inverse problem of electrical impedance tomography. de Munck JC; Faes TJ; Heethaar RM IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854 [TBL] [Abstract][Full Text] [Related]
7. The computational performance of a high-order coupled FEM/BEM procedure in electropotential problems. Bradley CP; Harris GM; Pullan AJ IEEE Trans Biomed Eng; 2001 Nov; 48(11):1238-50. PubMed ID: 11686623 [TBL] [Abstract][Full Text] [Related]
8. Fast multipole acceleration of the MEG/EEG boundary element method. Kybic J; Clerc M; Faugeras O; Keriven R; Papadopoulo T Phys Med Biol; 2005 Oct; 50(19):4695-710. PubMed ID: 16177498 [TBL] [Abstract][Full Text] [Related]
9. An improved boundary element method for realistic volume-conductor modeling. Fuchs M; Drenckhahn R; Wischmann HA; Wagner M IEEE Trans Biomed Eng; 1998 Aug; 45(8):980-97. PubMed ID: 9691573 [TBL] [Abstract][Full Text] [Related]
10. Factors affecting the accuracy of the boundary element method in the forward problem--I: Calculating surface potentials. Ferguson AS; Stroink G IEEE Trans Biomed Eng; 1997 Nov; 44(11):1139-55. PubMed ID: 9353994 [TBL] [Abstract][Full Text] [Related]
11. [Effects of human thorax tissues on conduction of electrocardiogram and body surface potential]. He W; Wu Q; Liu L; Yang H; Liu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):471-6. PubMed ID: 12552726 [TBL] [Abstract][Full Text] [Related]
12. Linear inverse solutions: simulations from a realistic head model in MEG. Soufflet L; Boeijinga PH Brain Topogr; 2005; 18(2):87-99. PubMed ID: 16341577 [TBL] [Abstract][Full Text] [Related]
13. [Establishment and discretization of human torso computer images for ECG simulation]. Peng H; Yang J; Zhang J; Feng H; Zhang Z; Sui L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Dec; 15(4):388-92, 396. PubMed ID: 12552786 [TBL] [Abstract][Full Text] [Related]
14. The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem. Jiang M; Xia L; Huang W; Shou G; Liu F; Crozier S Med Eng Phys; 2009 Oct; 31(8):979-85. PubMed ID: 19564127 [TBL] [Abstract][Full Text] [Related]
15. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. Geneser SE; Kirby RM; MacLeod RS IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related]
17. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Jiang M; Xia L; Shou G; Tang M Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454 [TBL] [Abstract][Full Text] [Related]
18. Generalized head models for MEG/EEG: boundary element method beyond nested volumes. Kybic J; Clerc M; Faugeras O; Keriven R; Papadopoulo T Phys Med Biol; 2006 Mar; 51(5):1333-46. PubMed ID: 16481698 [TBL] [Abstract][Full Text] [Related]
19. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart. Hopenfeld B Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373 [TBL] [Abstract][Full Text] [Related]
20. A low computational complexity algorithm for ECG signal compression. Blanco-Velasco M; Cruz-Roldán F; López-Ferreras F; Bravo-Santos A; Martínez-Muñoz D Med Eng Phys; 2004 Sep; 26(7):553-68. PubMed ID: 15271283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]