BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 19272919)

  • 1. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rule-based controller based on suction detection for rotary blood pumps.
    Ferreira A; Boston JR; Antaki JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3978-81. PubMed ID: 18002871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal sensor count approach to fuzzy logic rotary blood pump flow control.
    Casas F; Ahmed N; Reeves A
    ASAIO J; 2007; 53(2):140-6. PubMed ID: 17413551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suction due to left ventricular assist: implications for device control and management.
    Reesink K; Dekker A; Van der Nagel T; Beghi C; Leonardi F; Botti P; De Cicco G; Lorusso R; Van der Veen F; Maessen J
    Artif Organs; 2007 Jul; 31(7):542-9. PubMed ID: 17584479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced suction detection for an axial flow pump.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2006 Sep; 30(9):665-70. PubMed ID: 16934094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.