These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19272926)

  • 1. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
    Chadwick EK; Blana D; van den Bogert AJ; Kirsch RF
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):941-8. PubMed ID: 19272926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moment arms and lengths of human upper limb muscles as functions of joint angles.
    Pigeon P; Yahia L; Feldman AG
    J Biomech; 1996 Oct; 29(10):1365-70. PubMed ID: 8884483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward and inverse dynamics modeling of human shoulder-arm musculoskeletal system with scapulothoracic constraint.
    Hu T; Kühn J; Haddadin S
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):785-803. PubMed ID: 32552013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel shoulder-elbow mechanism for increasing speed in a multijoint arm movement.
    Debicki DB; Watts S; Gribble PL; Hore J
    Exp Brain Res; 2010 Jun; 203(3):601-13. PubMed ID: 20454785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.
    Akhtar A; Hargrove LJ; Bretl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4160-3. PubMed ID: 23366844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of a musculoskeletal model of the elbow joint complex.
    Gonzalez RV; Hutchins EL; Barr RE; Abraham LD
    J Biomech Eng; 1996 Feb; 118(1):32-40. PubMed ID: 8833072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability analysis for postural control in a two-joint limb system.
    Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):249-59. PubMed ID: 12611363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic elements of arm postural control analyzed by unloading.
    Archambault PS; Mihaltchev P; Levin MF; Feldman AG
    Exp Brain Res; 2005 Jul; 164(2):225-41. PubMed ID: 15856209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
    Blana D; Hincapie JG; Chadwick EK; Kirsch RF
    J Biomech; 2008; 41(8):1714-21. PubMed ID: 18420213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilateral reaching to asymmetrical targets: muscle and joint dynamic interlimb adaptations.
    Hatzitaki V; McKinley P
    Res Q Exerc Sport; 1998 Dec; 69(4):344-54. PubMed ID: 9864753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoulder and elbow joint power differ as a general feature of vertical arm movements.
    Galloway JC; Bhat A; Heathcock JC; Manal K
    Exp Brain Res; 2004 Aug; 157(3):391-6. PubMed ID: 15252703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of inter-joint coupling during single-joint elbow flexions after shoulder fixation.
    Debicki DB; Gribble PL
    Exp Brain Res; 2005 May; 163(2):252-7. PubMed ID: 15754174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time simulation of three-dimensional shoulder girdle and arm dynamics.
    Chadwick EK; Blana D; Kirsch RF; van den Bogert AJ
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1947-56. PubMed ID: 24956613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the differences in shoulder muscle activation according to arm rotation angle.
    Ijiri T; Urabe Y; Maeda N; Sasadai J; Suzuki T
    Hum Mov Sci; 2020 Feb; 69():102567. PubMed ID: 31989947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of initial upper-limb alignment on muscle contributions to isometric strength curves.
    Winters JM; Kleweno DG
    J Biomech; 1993 Feb; 26(2):143-53. PubMed ID: 8429057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement.
    de Rugy A; Riek S; Oytam Y; Carroll TJ; Davoodi R; Carson RG
    Exp Brain Res; 2008 Aug; 189(4):421-34. PubMed ID: 18545990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.