These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19273265)

  • 21. H
    Chhabra A; Jain N; Varshney R; Sharma M
    Cell Signal; 2023 Jul; 107():110664. PubMed ID: 37004833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox control of cardiac remodeling in atrial fibrillation.
    Wolke C; Bukowska A; Goette A; Lendeckel U
    Biochim Biophys Acta; 2015 Aug; 1850(8):1555-65. PubMed ID: 25513966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca
    Zhao GJ; Zhao CL; Ouyang S; Deng KQ; Zhu L; Montezano AC; Zhang C; Hu F; Zhu XY; Tian S; Liu X; Ji YX; Zhang P; Zhang XJ; She ZG; Touyz RM; Li H
    Hypertension; 2020 Sep; 76(3):827-838. PubMed ID: 32683902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting calcium and the mitochondria in prevention of pathology in the heart.
    Viola HM; Hool LC
    Curr Drug Targets; 2011 May; 12(5):748-60. PubMed ID: 21291390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical role of X-box binding protein 1 in NADPH oxidase 4-triggered cardiac hypertrophy is mediated by receptor interacting protein kinase 1.
    Chen L; Zhao M; Li J; Wang Y; Bao Q; Wu S; Deng X; Tang X; Wu W; Liu X
    Cell Cycle; 2017 Feb; 16(4):348-359. PubMed ID: 27929749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox signalling involving NADPH oxidase-derived reactive oxygen species.
    Dworakowski R; Anilkumar N; Zhang M; Shah AM
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):960-4. PubMed ID: 17052237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BRD4 blockage alleviates pathological cardiac hypertrophy through the suppression of fibrosis and inflammation via reducing ROS generation.
    Zhu W; Wu RD; Lv YG; Liu YM; Huang H; Xu JQ
    Biomed Pharmacother; 2020 Jan; 121():109368. PubMed ID: 31707348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria in cardiac hypertrophy and heart failure.
    Rosca MG; Tandler B; Hoppel CL
    J Mol Cell Cardiol; 2013 Feb; 55():31-41. PubMed ID: 22982369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure.
    Dhalla NS; Saini-Chohan HK; Rodriguez-Leyva D; Elimban V; Dent MR; Tappia PS
    Cardiovasc Res; 2009 Feb; 81(3):429-38. PubMed ID: 18852252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure.
    Heger J; Schulz R; Euler G
    Br J Pharmacol; 2016 Jan; 173(1):3-14. PubMed ID: 26431212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress and heart failure.
    Tsutsui H; Kinugawa S; Matsushima S
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2181-90. PubMed ID: 21949114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox regulation of sodium and calcium handling.
    Wagner S; Rokita AG; Anderson ME; Maier LS
    Antioxid Redox Signal; 2013 Mar; 18(9):1063-77. PubMed ID: 22900788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy.
    Sun B; Huo R; Sheng Y; Li Y; Xie X; Chen C; Liu HB; Li N; Li CB; Guo WT; Zhu JX; Yang BF; Dong DL
    Hypertension; 2013 Feb; 61(2):352-60. PubMed ID: 23248151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of reactive oxygen species in myocardial remodeling.
    Zhang M; Shah AM
    Curr Heart Fail Rep; 2007 Mar; 4(1):26-30. PubMed ID: 17386182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADPH oxidases in cardiovascular health and disease.
    Cave AC; Brewer AC; Narayanapanicker A; Ray R; Grieve DJ; Walker S; Shah AM
    Antioxid Redox Signal; 2006; 8(5-6):691-728. PubMed ID: 16771662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway.
    Chen Y; Ge Z; Huang S; Zhou L; Zhai C; Chen Y; Hu Q; Cao W; Weng Y; Li Y
    Aging (Albany NY); 2020 Mar; 12(6):5362-5383. PubMed ID: 32209725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular cyclophilin A induces cardiac hypertrophy via the ERK/p47phox pathway.
    Cao M; Mao Z; Peng M; Zhao Q; Sun X; Yan J; Yuan W
    Mol Cell Endocrinol; 2020 Dec; 518():110990. PubMed ID: 32805334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological and pathological cardiac hypertrophy.
    Shimizu I; Minamino T
    J Mol Cell Cardiol; 2016 Aug; 97():245-62. PubMed ID: 27262674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.
    Kuroda J; Ago T; Matsushima S; Zhai P; Schneider MD; Sadoshima J
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15565-70. PubMed ID: 20713697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative stress and cardiac hypertrophy: a review.
    Maulik SK; Kumar S
    Toxicol Mech Methods; 2012 Jun; 22(5):359-66. PubMed ID: 22394344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.