These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19273331)

  • 1. Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis.
    Bellance N; Lestienne P; Rossignol R
    Front Biosci (Landmark Ed); 2009 Jan; 14(11):4015-34. PubMed ID: 19273331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.
    Kuo CW; Tsai MH; Lin TK; Tiao MM; Wang PW; Chuang JH; Chen SD; Liou CW
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28590414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial alterations during carcinogenesis: a review of metabolic transformation and targets for anticancer treatments.
    Wang X; Peralta S; Moraes CT
    Adv Cancer Res; 2013; 119():127-60. PubMed ID: 23870511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells.
    Lee S; Hallis SP; Jung KA; Ryu D; Kwak MK
    Redox Biol; 2019 Jun; 24():101210. PubMed ID: 31078780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria and Cancer.
    Zong WX; Rabinowitz JD; White E
    Mol Cell; 2016 Mar; 61(5):667-676. PubMed ID: 26942671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain.
    Garcia-Heredia JM; Carnero A
    Oncotarget; 2015 Dec; 6(39):41582-99. PubMed ID: 26462158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer.
    Ristic B; Bhutia YD; Ganapathy V
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):246-257. PubMed ID: 28512002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity.
    Kuo CY; Cheng CT; Hou P; Lin YP; Ma H; Chung Y; Chi K; Chen Y; Li W; Kung HJ; Ann DK
    Oncotarget; 2016 Jun; 7(23):34052-69. PubMed ID: 27058900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis.
    Lu H; Forbes RA; Verma A
    J Biol Chem; 2002 Jun; 277(26):23111-5. PubMed ID: 11943784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites.
    Menendez JA; Alarcón T; Joven J
    Cell Cycle; 2014; 13(5):699-709. PubMed ID: 24526120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.
    Rogalinska M
    Mini Rev Med Chem; 2016; 16(7):524-30. PubMed ID: 26471969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia.
    Agani FH; Pichiule P; Chavez JC; LaManna JC
    J Biol Chem; 2000 Nov; 275(46):35863-7. PubMed ID: 10961998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development.
    Jezek P; Plecitá-Hlavatá L; Smolková K; Rossignol R
    Int J Biochem Cell Biol; 2010 May; 42(5):604-22. PubMed ID: 19931409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.