BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19273533)

  • 1. A feature-based approach to modeling protein-protein interaction hot spots.
    Cho KI; Kim D; Lee D
    Nucleic Acids Res; 2009 May; 37(8):2672-87. PubMed ID: 19273533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.
    Zhu X; Mitchell JC
    Proteins; 2011 Sep; 79(9):2671-83. PubMed ID: 21735484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated decision-tree approach to predicting protein interaction hot spots.
    Darnell SJ; Page D; Mitchell JC
    Proteins; 2007 Sep; 68(4):813-23. PubMed ID: 17554779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KFC Server: interactive forecasting of protein interaction hot spots.
    Darnell SJ; LeGault L; Mitchell JC
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W265-9. PubMed ID: 18539611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rigorous assessment and integration of the sequence and structure based features to predict hot spots.
    Chen R; Chen W; Yang S; Wu D; Wang Y; Tian Y; Shi Y
    BMC Bioinformatics; 2011 Jul; 12():311. PubMed ID: 21798070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-protein interface hot spots prediction based on a hybrid feature selection strategy.
    Qiao Y; Xiong Y; Gao H; Zhu X; Chen P
    BMC Bioinformatics; 2018 Jan; 19(1):14. PubMed ID: 29334889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods.
    Lise S; Archambeau C; Pontil M; Jones DT
    BMC Bioinformatics; 2009 Oct; 10():365. PubMed ID: 19878545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.
    Chen R; Zhang Z; Wu D; Zhang P; Zhang X; Wang Y; Shi Y
    J Theor Biol; 2011 Jan; 269(1):174-80. PubMed ID: 21035465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iPNHOT: a knowledge-based approach for identifying protein-nucleic acid interaction hot spots.
    Zhu X; Liu L; He J; Fang T; Xiong Y; Mitchell JC
    BMC Bioinformatics; 2020 Jul; 21(1):289. PubMed ID: 32631222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features.
    Xia J; Yue Z; Di Y; Zhu X; Zheng CH
    Oncotarget; 2016 Apr; 7(14):18065-75. PubMed ID: 26934646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approaches for Protein⁻Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment.
    Liu S; Liu C; Deng L
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30287797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.
    Liu Q; Ren J; Song J; Li J
    PLoS One; 2015; 10(12):e0144486. PubMed ID: 26675422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PredHS: a web server for predicting protein-protein interaction hot spots by using structural neighborhood properties.
    Deng L; Zhang QC; Chen Z; Meng Y; Guan J; Zhou S
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W290-5. PubMed ID: 24852252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting.
    Wang H; Liu C; Deng L
    Sci Rep; 2018 Sep; 8(1):14285. PubMed ID: 30250210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SemiHS: an iterative semi-supervised approach for predicting protein-protein interaction hot spots.
    Deng L; Guan JH; Dong QW; Zhou SG
    Protein Pept Lett; 2011 Sep; 18(9):896-905. PubMed ID: 21529341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.