These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19273843)

  • 21. Neural systems and the inhibitory modulation of agonistic behavior: a comparison of mammalian species.
    Albert DJ; Walsh ML
    Neurosci Biobehav Rev; 1984; 8(1):5-24. PubMed ID: 6374531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defensive aggregation (huddling) in Rattus norvegicus toward predator odor: individual differences, social buffering effects and neural correlates.
    Bowen MT; Kevin RC; May M; Staples LG; Hunt GE; McGregor IS
    PLoS One; 2013; 8(7):e68483. PubMed ID: 23922655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Critical analysis of the neural systems organizing innate fear responses].
    Canteras NS
    Braz J Psychiatry; 2003 Dec; 25 Suppl 2():21-4. PubMed ID: 14978581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of glutamate NMDA receptors and nitric oxide located within the periaqueductal gray on defensive behaviors in mice confronted by predator.
    Carvalho-Netto EF; Gomes KS; Amaral VC; Nunes-de-Souza RL
    Psychopharmacology (Berl); 2009 Jul; 204(4):617-25. PubMed ID: 19241059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural circuits of fear and defensive behavior.
    Carli G; Farabollini F
    Prog Brain Res; 2022; 271(1):51-69. PubMed ID: 35397895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lesion of the ventral periaqueductal gray reduces conditioned fear but does not change freezing induced by stimulation of the dorsal periaqueductal gray.
    Vianna DM; Graeff FG; Landeira-Fernandez J; Brandão ML
    Learn Mem; 2001; 8(3):164-9. PubMed ID: 11390636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensing danger through the olfactory system: the role of the hypothalamic dorsal premammillary nucleus.
    Canteras NS; Kroon JA; Do-Monte FH; Pavesi E; Carobrez AP
    Neurosci Biobehav Rev; 2008 Sep; 32(7):1228-35. PubMed ID: 18550169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the anteromedial thalamus on social defeat-associated contextual fear memory.
    Rangel MJ; Baldo MVC; Canteras NS
    Behav Brain Res; 2018 Feb; 339():269-277. PubMed ID: 29103920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Testing conditions in shock-based contextual fear conditioning influence both the behavioral responses and the activation of circuits potentially involved in contextual avoidance.
    Viellard J; Baldo MV; Canteras NS
    Behav Brain Res; 2016 Dec; 315():123-9. PubMed ID: 27544875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of lesions of amygdaloid nuclei and substantia nigra on aversive responses induced by electrical stimulation of the inferior colliculus.
    Maisonnette SS; Kawasaki MC; Coimbra NC; Brandão ML
    Brain Res Bull; 1996; 40(2):93-8. PubMed ID: 8724425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amygdalar roles during exposure to a live predator and to a predator-associated context.
    Martinez RC; Carvalho-Netto EF; Ribeiro-Barbosa ER; Baldo MV; Canteras NS
    Neuroscience; 2011 Jan; 172():314-28. PubMed ID: 20955766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defensive behaviors and brain regional activation changes in rats confronting a snake.
    Mendes-Gomes J; Motta SC; Passoni Bindi R; de Oliveira AR; Ullah F; Baldo MVC; Coimbra NC; Canteras NS; Blanchard DC
    Behav Brain Res; 2020 Mar; 381():112469. PubMed ID: 31917239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predator odor fear conditioning: current perspectives and new directions.
    Takahashi LK; Chan MM; Pilar ML
    Neurosci Biobehav Rev; 2008 Sep; 32(7):1218-27. PubMed ID: 18577397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blockade of NMDA or NO in the dorsal premammillary nucleus attenuates defensive behaviors.
    Aguiar DC; Guimarães FS
    Physiol Behav; 2011 Jun; 103(3-4):279-83. PubMed ID: 21362437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defensive responses to predator threat in the rat and mouse.
    Blanchard DC; Blanchard RJ; Griebel G
    Curr Protoc Neurosci; 2005 Feb; Chapter 8():Unit 8.19. PubMed ID: 18428625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New perspectives on beta-adrenergic mediation of innate and learned fear responses to predator odor.
    Do Monte FH; Canteras NS; Fernandes D; Assreuy J; Carobrez AP
    J Neurosci; 2008 Dec; 28(49):13296-302. PubMed ID: 19052221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The periaqueductal gray and its potential role in maternal behavior inhibition in response to predatory threats.
    Sukikara MH; Mota-Ortiz SR; Baldo MV; Felicio LF; Canteras NS
    Behav Brain Res; 2010 Jun; 209(2):226-33. PubMed ID: 20138922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator.
    de Andrade Rufino R; Mota-Ortiz SR; De Lima MAX; Baldo MVC; Canteras NS
    Brain Struct Funct; 2019 May; 224(4):1537-1551. PubMed ID: 30847642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance.
    McNaughton N; Corr PJ
    Neurosci Biobehav Rev; 2004 May; 28(3):285-305. PubMed ID: 15225972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gabaergic mechanisms of hypothalamic nuclei in the expression of conditioned fear.
    Santos JM; Macedo CE; Brandão ML
    Neurobiol Learn Mem; 2008 Oct; 90(3):560-8. PubMed ID: 18634894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.