These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 19273853)
1. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Koutsopoulos S; Unsworth LD; Nagai Y; Zhang S Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4623-8. PubMed ID: 19273853 [TBL] [Abstract][Full Text] [Related]
2. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. Koutsopoulos S; Zhang S J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676 [TBL] [Abstract][Full Text] [Related]
3. [Controlled release of fuctional proteins IGF-1, aFGF and VEGF through self-assembling peptide nanofiber hydrogel]. Liu Y; Wu M; Lin B; Zhao X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):310-3. PubMed ID: 21604492 [TBL] [Abstract][Full Text] [Related]
4. Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold. Liang J; Liu G; Wang J; Sun XS Amino Acids; 2017 Dec; 49(12):2015-2021. PubMed ID: 28603803 [TBL] [Abstract][Full Text] [Related]
5. Slow release of molecules in self-assembling peptide nanofiber scaffold. Nagai Y; Unsworth LD; Koutsopoulos S; Zhang S J Control Release; 2006 Sep; 115(1):18-25. PubMed ID: 16962196 [TBL] [Abstract][Full Text] [Related]
6. The effect of protein structure on their controlled release from an injectable peptide hydrogel. Branco MC; Pochan DJ; Wagner NJ; Schneider JP Biomaterials; 2010 Dec; 31(36):9527-34. PubMed ID: 20952055 [TBL] [Abstract][Full Text] [Related]
7. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
8. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334 [TBL] [Abstract][Full Text] [Related]
9. Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel. Zhou Y; Li J; Zhang Y; Dong D; Zhang E; Ji F; Qin Z; Yang J; Yao F J Phys Chem B; 2017 Feb; 121(4):800-814. PubMed ID: 28060509 [TBL] [Abstract][Full Text] [Related]
10. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Liu Y; Zhang L; Wei W Int J Nanomedicine; 2017; 12():659-670. PubMed ID: 28176898 [TBL] [Abstract][Full Text] [Related]
11. Micro-structured smart hydrogels with enhanced protein loading and release efficiency. Zhang JT; Petersen S; Thunga M; Leipold E; Weidisch R; Liu X; Fahr A; Jandt KD Acta Biomater; 2010 Apr; 6(4):1297-306. PubMed ID: 19913647 [TBL] [Abstract][Full Text] [Related]
12. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro. Xing JZ; Lu L; Unsworth LD; Major PW; Doschak MR; Kaipatur NR Acta Biomater; 2017 Feb; 49():306-315. PubMed ID: 27940164 [TBL] [Abstract][Full Text] [Related]
13. Loading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels. Jensen M; Birch Hansen P; Murdan S; Frokjaer S; Florence AT Eur J Pharm Sci; 2002 Mar; 15(2):139-48. PubMed ID: 11849910 [TBL] [Abstract][Full Text] [Related]
14. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Nov; 147(3):392-9. PubMed ID: 20709121 [TBL] [Abstract][Full Text] [Related]
15. Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. Censi R; Vermonden T; van Steenbergen MJ; Deschout H; Braeckmans K; De Smedt SC; van Nostrum CF; di Martino P; Hennink WE J Control Release; 2009 Dec; 140(3):230-6. PubMed ID: 19527757 [TBL] [Abstract][Full Text] [Related]
16. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin. Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142 [TBL] [Abstract][Full Text] [Related]
17. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery. Manokruang K; Lee DS Macromol Biosci; 2013 Sep; 13(9):1195-203. PubMed ID: 23893912 [TBL] [Abstract][Full Text] [Related]
18. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
19. Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair. He B; Ou Y; Chen S; Zhao W; Zhou A; Zhao J; Li H; Jiang D; Zhu Y Mater Sci Eng C Mater Biol Appl; 2017 May; 74():451-458. PubMed ID: 28254316 [TBL] [Abstract][Full Text] [Related]
20. Drug release from new bioartificial hydrogel. Gayet JC; Fortier G Artif Cells Blood Substit Immobil Biotechnol; 1995; 23(5):605-11. PubMed ID: 8528454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]