These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19273853)

  • 21. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior.
    de Jong SJ; van Eerdenbrugh B; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE
    J Control Release; 2001 Apr; 71(3):261-75. PubMed ID: 11295219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
    Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M
    J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration.
    Wang X; Wang J; Guo L; Wang X; Chen H; Wang X; Liu J; Tredget EE; Wu Y
    Nanomedicine; 2016 Oct; 12(7):2115-2125. PubMed ID: 27288668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery.
    Payyappilly S; Dhara S; Chattopadhyay S
    J Biomed Mater Res A; 2014 May; 102(5):1500-9. PubMed ID: 23681592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic reassembly of peptide RADA16 nanofiber scaffold.
    Yokoi H; Kinoshita T; Zhang S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8414-9. PubMed ID: 15939888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow and sustained release of active cytokines from self-assembling peptide scaffolds.
    Gelain F; Unsworth LD; Zhang S
    J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds.
    Gelain F; Lomander A; Vescovi AL; Zhang S
    J Nanosci Nanotechnol; 2007 Feb; 7(2):424-34. PubMed ID: 17450774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological evaluation of human degenerated nucleus pulposus cells in functionalized self-assembling peptide nanofiber hydrogel scaffold.
    Tao H; Zhang Y; Wang CF; Zhang C; Wang XM; Wang DL; Bai XD; Wen TY; Xin HK; Wu JH; Liu Y; He Q; Ruan D
    Tissue Eng Part A; 2014 Jun; 20(11-12):1621-31. PubMed ID: 24450796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels.
    Jain E; Sheth S; Dunn A; Zustiak SP; Sell SA
    J Biomed Mater Res A; 2017 Dec; 105(12):3304-3314. PubMed ID: 28865187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties.
    Zustiak SP; Durbal R; Leach JB
    Acta Biomater; 2010 Sep; 6(9):3404-14. PubMed ID: 20385260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioactive supramolecular hydrogel with controlled dual drug release characteristics.
    Ma D; Tu K; Zhang LM
    Biomacromolecules; 2010 Sep; 11(9):2204-12. PubMed ID: 20831271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method.
    Liang S; Xu J; Weng L; Dai H; Zhang X; Zhang L
    J Control Release; 2006 Oct; 115(2):189-96. PubMed ID: 16996163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
    Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X
    J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release.
    Wickremasinghe NC; Kumar VA; Hartgerink JD
    Biomacromolecules; 2014 Oct; 15(10):3587-95. PubMed ID: 25308335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tunable hydrogel for encapsulation and controlled release of bioactive proteins.
    Delgado M; Spanka C; Kerwin LD; Wentworth P; Janda KD
    Biomacromolecules; 2002; 3(2):262-71. PubMed ID: 11888310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching.
    Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE
    J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of poly(glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins.
    Peng Z; She Y; Chen L
    J Biomater Sci Polym Ed; 2015; 26(2):111-27. PubMed ID: 25421870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysozyme loading and release from hydrogels carrying pendant phosphate groups.
    Nakamae K; Nizuka T; Miyata T; Furukawa M; Nishino T; Kato K; Inoue T; Hoffman AS; Kanzaki Y
    J Biomater Sci Polym Ed; 1997; 9(1):43-53. PubMed ID: 9505202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genipin-crosslinked casein hydrogels for controlled drug delivery.
    Song F; Zhang LM; Yang C; Yan L
    Int J Pharm; 2009 May; 373(1-2):41-7. PubMed ID: 19429286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.