These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19273894)

  • 1. Separation of oil from oily wastewater by modified resin.
    Zhou YB; Chen L; Hu XM; Lu J
    Water Sci Technol; 2009; 59(5):957-63. PubMed ID: 19273894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile.
    Ji F; Li C; Dong X; Li Y; Wang D
    J Hazard Mater; 2009 May; 164(2-3):1346-51. PubMed ID: 19022567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method.
    Tir M; Moulai-Mostefa N
    J Hazard Mater; 2008 Oct; 158(1):107-15. PubMed ID: 18313208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation.
    Zeng Y; Yang C; Zhang J; Pu W
    J Hazard Mater; 2007 Aug; 147(3):991-6. PubMed ID: 17350754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water.
    Li ZL; Liu W; Chen XF; Shang WL
    Water Sci Technol; 2009; 59(9):1751-8. PubMed ID: 19448310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oily water treatment using a new steady-state fiber-bed coalescer.
    Sećerov Sokolović R; Sokolović S; Sević S
    J Hazard Mater; 2009 Feb; 162(1):410-5. PubMed ID: 18579289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on a new surfactant for removal of phenol from wastewater by emulsion liquid membrane.
    Mortaheb HR; Amini MH; Sadeghian F; Mokhtarani B; Daneshyar H
    J Hazard Mater; 2008 Dec; 160(2-3):582-8. PubMed ID: 18448245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ).
    Ozdemir O; Turan M; Turan AZ; Faki A; Engin AB
    J Hazard Mater; 2009 Jul; 166(2-3):647-54. PubMed ID: 19136207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of oil removal from real wastewater with different sorbent materials.
    Rajakovic V; Aleksic G; Radetic M; Rajakovic Lj
    J Hazard Mater; 2007 May; 143(1-2):494-9. PubMed ID: 17049730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of oil-in-water emulsions: performance of a sawdust bed filter.
    Cambiella A; Ortea E; Ríos G; Benito JM; Pazos C; Coca J
    J Hazard Mater; 2006 Apr; 131(1-3):195-9. PubMed ID: 16263209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant.
    Muthuraman G; Teng TT; Leh CP; Norli I
    J Hazard Mater; 2009 Apr; 163(1):363-9. PubMed ID: 18782652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant.
    Almubaddal F; Alrumaihi K; Ajbar A
    J Hazard Mater; 2009 Jan; 161(1):431-8. PubMed ID: 18471966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous elimination of dissolved and dispersed pollutants from cutting oil wastes using two aqueous phase extraction methods.
    Talbi Z; Haddou B; Bouberka Z; Derriche Z
    J Hazard Mater; 2009 Apr; 163(2-3):748-55. PubMed ID: 18692960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Treatment of cetyltrimethyl ammonium bromide wastewater by potassium ferrate].
    Yang WH; Wang HH; Zeng XX; Huang TT
    Huan Jing Ke Xue; 2009 Aug; 30(8):2277-81. PubMed ID: 19799287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation.
    de Sena RF; Moreira RF; José HJ
    Bioresour Technol; 2008 Nov; 99(17):8221-5. PubMed ID: 18442902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus recovery from wastewater: needs, technologies and costs.
    Cornel P; Schaum C
    Water Sci Technol; 2009; 59(6):1069-76. PubMed ID: 19342801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a modified multi-stage bubble column reactor for lead(II) and biological oxygen demand removal from wastewater using activated rice husk.
    Sahu JN; Agarwal S; Meikap BC; Biswas MN
    J Hazard Mater; 2009 Jan; 161(1):317-24. PubMed ID: 18462879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2009 Oct; 170(2-3):771-8. PubMed ID: 19524357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradability of chlorophenol wastewater enhanced by solar photo-Fenton process.
    Kuo WS; Lin IT
    Water Sci Technol; 2009; 59(5):973-8. PubMed ID: 19273896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.