BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19273899)

  • 1. Optimization of biological wastewater treatment conditions for 1,4-dioxane decomposition in polyester manufacturing processes.
    Han JS; So MH; Kim CG
    Water Sci Technol; 2009; 59(5):995-1002. PubMed ID: 19273899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process.
    So MH; Han JS; Han TH; Seo JW; Kim CG
    Water Sci Technol; 2009; 59(5):1003-9. PubMed ID: 19273900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The removal of 1,4-dioxane from polyester manufacturing process wastewater using an up-flow Biological Aerated Filter (UBAF) packed with tire chips.
    Han TH; Han JS; So MH; Seo JW; Ahn CM; Min DH; Yoo YS; Cha DK; Kim CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(1):117-29. PubMed ID: 22217090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples.
    Sei K; Kakinoki T; Inoue D; Soda S; Fujita M; Ike M
    Biodegradation; 2010 Jul; 21(4):585-91. PubMed ID: 20091334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.
    Mohd Nasir N; Teo Ming T; Ahmadun FR; Sobri S
    Water Sci Technol; 2010; 62(1):42-7. PubMed ID: 20595752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity-directed approach of polyester manufacturing industry wastewater provides useful information for conducting treatability studies.
    Caffaro-Filho RA; Morita DM; Wagner R; Durrant LR
    J Hazard Mater; 2009 Apr; 163(1):92-7. PubMed ID: 18684563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes.
    Coleman HM; Vimonses V; Leslie G; Amal R
    J Hazard Mater; 2007 Jul; 146(3):496-501. PubMed ID: 17574739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of alpha-beta unsaturated aldehydes as sources of toxicity to activated sludge biomass in polyester manufacturing wastewater.
    Caffaro-Filho RA; Wagner R; Umbuzeiro GA; Grossman MJ; Durrant LR
    Water Sci Technol; 2010; 61(9):2317-24. PubMed ID: 20418629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses.
    Guan X; Liu F; Wang J; Li C; Zheng X
    Water Sci Technol; 2018 Jan; 77(1-2):123-133. PubMed ID: 29339611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gases emissions from duckweed pond system treating polyester resin wastewater containing 1,4-dioxane and heavy metals.
    Osama R; Awad HM; Zha S; Meng F; Tawfik A
    Ecotoxicol Environ Saf; 2021 Jan; 207():111253. PubMed ID: 32911183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and degradation of bisphenol A by aerobic activated sludge.
    Zhao J; Li Y; Zhang C; Zeng Q; Zhou Q
    J Hazard Mater; 2008 Jun; 155(1-2):305-11. PubMed ID: 18179868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide.
    Suh JH; Mohseni M
    Water Res; 2004 May; 38(10):2596-604. PubMed ID: 15159163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.
    Zhang H; Xiang H; Zhang G; Cao X; Meng Q
    J Hazard Mater; 2009 Aug; 167(1-3):217-23. PubMed ID: 19185998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial succession in response to 1,4-dioxane exposure in activated sludge reactors: effect of inoculum source and extra carbon addition.
    Shin D; Sung DY; Moon HS; Nam K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):674-81. PubMed ID: 20390915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the effect of inoculation of activated sludge with bacteria actively degrading hydrocarbons on the biodegradation of petroleum products.
    Bieszkiewicz E; Boszczyk-Maleszak H; Włodarczyk A; Horoch M
    Acta Microbiol Pol; 2002; 51(3):285-92. PubMed ID: 12588103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater.
    Lee JW; Cha DK; Oh YK; Ko KB; Song JS
    J Hazard Mater; 2009 May; 164(1):67-72. PubMed ID: 18799266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological treatment of estrogenic substances.
    Miya A; Onda K; Nakamura Y; Takatoh C; Katsu Y; Tanaka T
    Environ Sci; 2007; 14(2):89-94. PubMed ID: 17585295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of pesticide residues in vineyard effluents by activated sludge treatment.
    Esteve K; Poupot C; Mietton-peuchot M; Milisic V
    Water Sci Technol; 2009; 60(7):1885-94. PubMed ID: 19809152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrooxidation of industrial wastewater containing 1,4-dioxane in the presence of different salts.
    Barndõk H; Hermosilla D; Cortijo L; Torres E; Blanco A
    Environ Sci Pollut Res Int; 2014 Apr; 21(8):5701-12. PubMed ID: 24430500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.