These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19274093)

  • 1. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.
    Little DY; Chen L
    PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a novel method for the identification of coevolving protein residues.
    Pritchard L; Bladon P; M O Mitchell J; J Dufton M
    Protein Eng; 2001 Aug; 14(8):549-55. PubMed ID: 11579223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets.
    Brandman R; Brandman Y; Pande VS
    PLoS One; 2012; 7(1):e30022. PubMed ID: 22279560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco.
    Wang M; Kapralov MV; Anisimova M
    BMC Evol Biol; 2011 Sep; 11():266. PubMed ID: 21942934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions.
    Gloor GB; Martin LC; Wahl LM; Dunn SD
    Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting coevolution in and among protein domains.
    Yeang CH; Haussler D
    PLoS Comput Biol; 2007 Nov; 3(11):e211. PubMed ID: 17983264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family.
    Lee Y; Mick J; Furdui C; Beamer LJ
    PLoS One; 2012; 7(6):e38114. PubMed ID: 22685552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the false positive rate in the non-parametric analysis of molecular coevolution.
    Codoñer FM; O'Dea S; Fares MA
    BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coevolutionary patterns in cytochrome c oxidase subunit I depend on structural and functional context.
    Wang ZO; Pollock DD
    J Mol Evol; 2007 Nov; 65(5):485-95. PubMed ID: 17955155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolving protein residues: maximum likelihood identification and relationship to structure.
    Pollock DD; Taylor WR; Goldman N
    J Mol Biol; 1999 Mar; 287(1):187-98. PubMed ID: 10074416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting phylogenetic dimensions of coevolution reveals hidden functional signals.
    Colavin A; Atolia E; Bitbol AF; Huang KC
    Sci Rep; 2022 Jan; 12(1):820. PubMed ID: 35039514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
    Fares MA; Travers SA
    Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics identification of coevolving residues.
    Dickson RJ; Gloor GB
    Methods Mol Biol; 2014; 1123():223-43. PubMed ID: 24510270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CoeViz: a web-based tool for coevolution analysis of protein residues.
    Baker FN; Porollo A
    BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis.
    Gueudré T; Baldassi C; Zamparo M; Weigt M; Pagnani A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12186-12191. PubMed ID: 27729520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Structural Determinants of Intra-Protein Compensatory Substitutions.
    Chaurasia S; Dutheil JY
    Mol Biol Evol; 2022 Apr; 39(4):. PubMed ID: 35349721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of coevolution between residues distant in protein 3D structures.
    Anishchenko I; Ovchinnikov S; Kamisetty H; Baker D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9122-9127. PubMed ID: 28784799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces.
    Teppa E; Zea DJ; Marino-Buslje C
    Protein Sci; 2017 Dec; 26(12):2438-2444. PubMed ID: 28980349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of contact residue pairs based on co-substitution between sites in protein structures.
    Miyazawa S
    PLoS One; 2013; 8(1):e54252. PubMed ID: 23342110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.