These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1927434)

  • 21. Model for the translational vestibuloocular reflex (VOR).
    Musallam WS; Tomlinson RD
    J Neurophysiol; 1999 Oct; 82(4):2010-4. PubMed ID: 10515992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural network model of the vestibulo-ocular reflex using a local synaptic learning rule.
    Arnold DB; Robinson DA
    Philos Trans R Soc Lond B Biol Sci; 1992 Sep; 337(1281):327-30. PubMed ID: 1359586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vestibular adaptation: how models can affect data interpretations.
    Galiana HL; Green AM
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):231-43. PubMed ID: 9743079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The aging vestibulo-ocular reflex (VOR) and adaptive plasticity.
    Paige GD
    Acta Otolaryngol Suppl; 1991; 481():297-300. PubMed ID: 1927400
    [No Abstract]   [Full Text] [Related]  

  • 25. Kinematics of the rotational vestibuloocular reflex: role of the cerebellum.
    Walker MF; Tian J; Zee DS
    J Neurophysiol; 2007 Jul; 98(1):295-302. PubMed ID: 17522172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?
    Dean P; Anderson S; Porrill J; Jörntell H
    J Physiol; 2013 Nov; 591(22):5459-74. PubMed ID: 23836690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the cerebellum in movement control and adaptation.
    Robinson FR
    Curr Opin Neurobiol; 1995 Dec; 5(6):755-62. PubMed ID: 8805412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The vestibulo-ocular and the vestibulospinal reflexes: noradrenergic influences on the plastic changes which affect the cerebellar cortex during vestibular adaptation.
    Pompeiano O
    Arch Ital Biol; 2006 Aug; 144(3-4):197-253. PubMed ID: 16977833
    [No Abstract]   [Full Text] [Related]  

  • 29. Imaging correlates of neural control of ocular movements.
    Agarwal M; Ulmer JL; Chandra T; Klein AP; Mark LP; Mohan S
    Eur Radiol; 2016 Jul; 26(7):2193-205. PubMed ID: 26396109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of cerebellar inactivation by lidocaine microdialysis on the vestibuloocular reflex in goldfish.
    McElligott JG; Beeton P; Polk J
    J Neurophysiol; 1998 Mar; 79(3):1286-94. PubMed ID: 9497410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noradrenergic influences on the cerebellar cortex: effects on vestibular reflexes under basic and adaptive conditions.
    Pompeiano O
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):93-105. PubMed ID: 9674520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical applications of control systems models: The neural integrators for eye movements.
    Sadeghpour S; Zee DS; Leigh RJ
    Prog Brain Res; 2019; 248():103-114. PubMed ID: 31239124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebellar skew deviation and the torsional vestibuloocular reflex.
    Wong AM; Sharpe JA
    Neurology; 2005 Aug; 65(3):412-9. PubMed ID: 16087906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conceptual models of neural organization.
    Szentágothai J; Arbib MA
    Neurosci Res Program Bull; 1974 Oct; 12(3):305-510. PubMed ID: 4437759
    [No Abstract]   [Full Text] [Related]  

  • 35. The cerebellar contribution to eye movements based upon lesions: binocular three-axis control and the translational vestibulo-ocular reflex.
    Zee DS; Walker MF; Ramat S
    Ann N Y Acad Sci; 2002 Apr; 956():178-89. PubMed ID: 11960803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The latency of the cat vestibulo-ocular reflex before and after short- and long-term adaptation.
    Khater TT; Quinn KJ; Pena J; Baker JF; Peterson BW
    Exp Brain Res; 1993; 94(1):16-32. PubMed ID: 8335071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural control of rotational kinematics within realistic vestibuloocular coordinate systems.
    Smith MA; Crawford JD
    J Neurophysiol; 1998 Nov; 80(5):2295-315. PubMed ID: 9819244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The neural basis for learning of simple motor skills.
    Lisberger SG
    Science; 1988 Nov; 242(4879):728-35. PubMed ID: 3055293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring sites for short-term VOR modulation using a bilateral model.
    Green A; Galiana HL
    Ann N Y Acad Sci; 1996 Jun; 781():625-8. PubMed ID: 8694458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.