BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 19274661)

  • 21. The potential impact of structural genomics on tuberculosis drug discovery.
    Arcus VL; Lott JS; Johnston JM; Baker EN
    Drug Discov Today; 2006 Jan; 11(1-2):28-34. PubMed ID: 16478688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection.
    Simeone R; Bottai D; Frigui W; Majlessi L; Brosch R
    Tuberculosis (Edinb); 2015 Jun; 95 Suppl 1():S150-4. PubMed ID: 25732627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system.
    Singh G; Singh G; Jadeja D; Kaur J
    Crit Rev Microbiol; 2010 Aug; 36(3):259-69. PubMed ID: 20500016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipolytic enzymes in Mycobacterium tuberculosis.
    Côtes K; Bakala N'goma JC; Dhouib R; Douchet I; Maurin D; Carrière F; Canaan S
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):741-9. PubMed ID: 18309478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular genetics of Mycobacterium tuberculosis pathogenesis.
    Clark-Curtiss JE; Haydel SE
    Annu Rev Microbiol; 2003; 57():517-49. PubMed ID: 14527290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rise and fall of the Mycobacterium tuberculosis genome.
    Veyrier FJ; Dufort A; Behr MA
    Trends Microbiol; 2011 Apr; 19(4):156-61. PubMed ID: 21277778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural proteomics and computational analysis of a deadly pathogen: combating Mycobacterium tuberculosis from multiple fronts.
    Strong M; Goulding CW
    Methods Biochem Anal; 2006; 49():245-69. PubMed ID: 16929683
    [No Abstract]   [Full Text] [Related]  

  • 28. Analyzing the interaction of pathogens with the host immune system.
    Jayachandran R; Scherr N; Pieters J
    Immunol Lett; 2009 Feb; 122(2):112-4. PubMed ID: 19135088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of vaccine research and development: tuberculosis.
    Girard MP; Fruth U; Kieny MP
    Vaccine; 2005 Dec; 23(50):5725-31. PubMed ID: 16153751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogenomics of mycobacteria.
    Gutierrez MC; Supply P; Brosch R
    Genome Dyn; 2009; 6():198-210. PubMed ID: 19696503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis.
    Wang X; Wang H; Xie J
    Sci China Life Sci; 2011 Apr; 54(4):300-10. PubMed ID: 21267668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis.
    Brzostek A; Dziadek B; Rumijowska-Galewicz A; Pawelczyk J; Dziadek J
    FEMS Microbiol Lett; 2007 Oct; 275(1):106-12. PubMed ID: 17651430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis.
    Sapriel G; Brosch R
    Genome Biol Evol; 2019 Aug; 11(8):2420-2438. PubMed ID: 31368488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tubercle bacilli rely on a type VII army for pathogenicity.
    Stoop EJ; Bitter W; van der Sar AM
    Trends Microbiol; 2012 Oct; 20(10):477-84. PubMed ID: 22858229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae.
    Dover LG; Cerdeño-Tárraga AM; Pallen MJ; Parkhill J; Besra GS
    FEMS Microbiol Rev; 2004 May; 28(2):225-50. PubMed ID: 15109786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of Mycobacterium tuberculosis: New Insights into Pathogenicity and Drug Resistance.
    Boritsch EC; Brosch R
    Microbiol Spectr; 2016 Oct; 4(5):. PubMed ID: 27787194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic determinants of speciation and spread of the
    Chiner-Oms Á; Sánchez-Busó L; Corander J; Gagneux S; Harris SR; Young D; González-Candelas F; Comas I
    Sci Adv; 2019 Jun; 5(6):eaaw3307. PubMed ID: 31448322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis.
    Waagmeester A; Thompson J; Reyrat JM
    Trends Microbiol; 2005 Nov; 13(11):505-9. PubMed ID: 16140533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
    Mukhopadhyay S; Nair S; Ghosh S
    FEMS Microbiol Rev; 2012 Mar; 36(2):463-85. PubMed ID: 22092372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.