These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19274725)
1. Characterization of the behavior of porous hydrogels in model osmotically-conditioned articular cartilage systems. Spiller KL; Laurencin SJ; Lowman AM J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):752-9. PubMed ID: 19274725 [TBL] [Abstract][Full Text] [Related]
2. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties. Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448 [TBL] [Abstract][Full Text] [Related]
3. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. Spiller KL; Holloway JL; Gribb ME; Lowman AM J Tissue Eng Regen Med; 2011 Aug; 5(8):636-47. PubMed ID: 21774087 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Holloway JL; Spiller KL; Lowman AM; Palmese GR Acta Biomater; 2011 Jun; 7(6):2477-82. PubMed ID: 21329769 [TBL] [Abstract][Full Text] [Related]
5. Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Holloway JL; Lowman AM; Palmese GR Acta Biomater; 2013 Feb; 9(2):5013-21. PubMed ID: 23022548 [TBL] [Abstract][Full Text] [Related]
6. Design and evaluation of nano-hydroxyapatite/poly(vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid)/nano-hydroxyapatite/poly(vinyl alcohol) scaffolds for cartilage repair. Su W; Hu Y; Zeng M; Li M; Lin S; Zhou Y; Xie J J Orthop Surg Res; 2019 Dec; 14(1):446. PubMed ID: 31847866 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Franco RA; Nguyen TH; Lee BT J Mater Sci Mater Med; 2011 Oct; 22(10):2207-18. PubMed ID: 21805330 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. Roberts JJ; Earnshaw A; Ferguson VL; Bryant SJ J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):158-69. PubMed ID: 21714081 [TBL] [Abstract][Full Text] [Related]
10. Cell viability of chitosan-containing semi-interpenetrated hydrogels based on PCL-PEG-PCL diacrylate macromer. Zhu AP; Chan-Park MB J Biomater Sci Polym Ed; 2005; 16(3):301-16. PubMed ID: 15850286 [TBL] [Abstract][Full Text] [Related]
11. Controlling degradation of acid-hydrolyzable pluronic hydrogels by physical entrapment of poly(lactic acid-co-glycolic acid) microspheres. Lee JB; Chun KW; Yoon JJ; Park TG Macromol Biosci; 2004 Oct; 4(10):957-62. PubMed ID: 15487026 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687 [TBL] [Abstract][Full Text] [Related]
13. Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties. Spiller KL; Laurencin SJ; Charlton D; Maher SA; Lowman AM Acta Biomater; 2008 Jan; 4(1):17-25. PubMed ID: 18029236 [TBL] [Abstract][Full Text] [Related]
14. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface. Kim HC; Lee H; Khetan J; Won YY Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595 [TBL] [Abstract][Full Text] [Related]
15. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S J Control Release; 2013 Dec; 172(3):715-29. PubMed ID: 24144918 [TBL] [Abstract][Full Text] [Related]
16. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Xie B; Jin L; Luo Z; Yu J; Shi S; Zhang Z; Shen M; Chen H; Li X; Song Z Int J Pharm; 2015 Jul; 490(1-2):375-83. PubMed ID: 26027491 [TBL] [Abstract][Full Text] [Related]
17. Effect of crosslinking density on swelling and mechanical properties of PEGDA400/PCLTMA900 hydrogels. Metz J; Gonnerman K; Chu A; Chu TM Biomed Sci Instrum; 2006; 42():389-94. PubMed ID: 16817639 [TBL] [Abstract][Full Text] [Related]
18. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471 [TBL] [Abstract][Full Text] [Related]
19. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Shi Y; Xiong D; Liu Y; Wang N; Zhao X Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():172-80. PubMed ID: 27157740 [TBL] [Abstract][Full Text] [Related]
20. Design of a composite biomaterial system for tissue engineering applications. Jiang B; Akar B; Waller TM; Larson JC; Appel AA; Brey EM Acta Biomater; 2014 Mar; 10(3):1177-86. PubMed ID: 24321351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]