BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19274742)

  • 21. Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue.
    Klinger P; Surmann-Schmitt C; Brem M; Swoboda B; Distler JH; Carl HD; von der Mark K; Hennig FF; Gelse K
    Arthritis Rheum; 2011 Sep; 63(9):2721-31. PubMed ID: 21391200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cartilaginous deposits in subchondral bone in regions of exposed bone in osteoarthritis of the human knee: histomorphometric study of PRG4 distribution in osteoarthritic cartilage.
    Zhang D; Johnson LJ; Hsu HP; Spector M
    J Orthop Res; 2007 Jul; 25(7):873-83. PubMed ID: 17343281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thrombospondin-1 prevents excessive ossification in cartilage repair tissue induced by osteogenic protein-1.
    Gelse K; Klinger P; Koch M; Surmann-Schmitt C; von der Mark K; Swoboda B; Hennig FF; Gusinde J
    Tissue Eng Part A; 2011 Aug; 17(15-16):2101-12. PubMed ID: 21513464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of CD-RAP mRNA during periosteal chondrogenesis.
    Sanyal A; Clemens V; Fitzsimmons JS; Reinholz GG; Sarkar G; Mukherjee N; O'Driscoll SW
    J Orthop Res; 2003 Mar; 21(2):296-304. PubMed ID: 12568962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pig chondrocyte xenoimplants for human chondral defect repair: an in vitro model.
    Fuentes-Boquete I; López-Armada MJ; Maneiro E; Fernández-Sueiro JL; Caramés B; Galdo F; de Toro FJ; Blanco FJ
    Wound Repair Regen; 2004; 12(4):444-52. PubMed ID: 15260810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects.
    Vinatier C; Gauthier O; Fatimi A; Merceron C; Masson M; Moreau A; Moreau F; Fellah B; Weiss P; Guicheux J
    Biotechnol Bioeng; 2009 Mar; 102(4):1259-67. PubMed ID: 18949749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of cartilage self repairs and repairs with costal and articular chondrocyte transplantation in treatment of cartilage defects in rats.
    Szeparowicz P; Popko J; Sawicki B; Wołczyński S; Bierć M
    Rocz Akad Med Bialymst; 2004; 49 Suppl 1():28-30. PubMed ID: 15638365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo.
    Fussenegger M; Meinhart J; Höbling W; Kullich W; Funk S; Bernatzky G
    Ann Plast Surg; 2003 Nov; 51(5):493-8. PubMed ID: 14595186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro.
    Hautier A; Salentey V; Aubert-Foucher E; Bougault C; Beauchef G; Ronzière MC; De Sobarnitsky S; Paumier A; Galéra P; Piperno M; Damour O; Mallein-Gerin F
    Growth Factors; 2008 Aug; 26(4):201-11. PubMed ID: 18720162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cartilage defect regeneration by ex vivo engineered autologous microtissue--preliminary results.
    Meyer U; Wiesmann HP; Libera J; Depprich R; Naujoks C; Handschel J
    In Vivo; 2012; 26(2):251-7. PubMed ID: 22351666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous collagen-enhanced recruitment of mesenchymal stem cells during rabbit articular cartilage repair.
    Kubo M; Imai S; Fujimiya M; Isoya E; Ando K; Mimura T; Matsusue Y
    Acta Orthop; 2007 Dec; 78(6):845-55. PubMed ID: 18236194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation.
    Dell'Accio F; Vanlauwe J; Bellemans J; Neys J; De Bari C; Luyten FP
    J Orthop Res; 2003 Jan; 21(1):123-31. PubMed ID: 12507589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular methods in cartilage research: primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells.
    Tew SR; Murdoch AD; Rauchenberg RP; Hardingham TE
    Methods; 2008 May; 45(1):2-9. PubMed ID: 18442700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Combination of microfracture and periosteal transplantation techniques for the treatment of full-thickness cartilage defects].
    Güneş T; Sen C; Erdem M; Köseoğlu RD; Filiz NO
    Acta Orthop Traumatol Turc; 2006; 40(4):315-23. PubMed ID: 17063056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair.
    Schulze-Tanzil G
    Ann Anat; 2009 Oct; 191(4):325-38. PubMed ID: 19541465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold.
    Zhang J; Liu L; Gao Z; Li L; Feng X; Wu W; Ma Q; Cheng X; Chen F; Mao T
    J Oral Maxillofac Surg; 2009 Feb; 67(2):257-64. PubMed ID: 19138597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The experimental study on optimal cell density and formation time of tissue engineered autologous cartilage].
    Xia WY; Cao YL; Shang QX
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 1999 Jul; 13(4):244-8. PubMed ID: 12080811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model.
    Schubert T; Anders S; Neumann E; Schölmerich J; Hofstädter F; Grifka J; Müller-Ladner U; Libera J; Schedel J
    Int J Mol Med; 2009 Apr; 23(4):455-60. PubMed ID: 19288020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms.
    Pallante BA; Duignan I; Okin D; Chin A; Bressan MC; Mikawa T; Edelberg JM
    Circ Res; 2007 Jan; 100(1):e1-11. PubMed ID: 17122441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.