These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Design of highly oleophobic cellulose surfaces from structured silicon templates. Aulin C; Yun SH; Wågberg L; Lindström T ACS Appl Mater Interfaces; 2009 Nov; 1(11):2443-52. PubMed ID: 20356113 [TBL] [Abstract][Full Text] [Related]
63. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D; Lee C; Nam Y Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626 [TBL] [Abstract][Full Text] [Related]
64. Wetting behavior and drainage of water droplets on microgrooved brass surfaces. Rahman MA; Jacobi AM Langmuir; 2012 Sep; 28(37):13441-51. PubMed ID: 22909187 [TBL] [Abstract][Full Text] [Related]
66. Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces. Anantharaju N; Panchagnula MV; Vedantam S; Neti S; Tatic-Lucic S Langmuir; 2007 Nov; 23(23):11673-6. PubMed ID: 17935366 [TBL] [Abstract][Full Text] [Related]
67. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
68. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time. Li X; Ma X; Lan Z Langmuir; 2010 Apr; 26(7):4831-8. PubMed ID: 20151667 [TBL] [Abstract][Full Text] [Related]
69. Wetting study of patterned surfaces for superhydrophobicity. Bhushan B; Chae Jung Y Ultramicroscopy; 2007 Oct; 107(10-11):1033-41. PubMed ID: 17553620 [TBL] [Abstract][Full Text] [Related]
70. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
71. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378 [TBL] [Abstract][Full Text] [Related]
72. Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces. Hansson PM; Hormozan Y; Brandner BD; Linnros J; Claesson PM; Swerin A; Schoelkopf J; Gane PA; Thormann E Langmuir; 2012 Jul; 28(30):11121-30. PubMed ID: 22769744 [TBL] [Abstract][Full Text] [Related]
73. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Kulinich SA; Farzaneh M Langmuir; 2009 Aug; 25(16):8854-6. PubMed ID: 19719211 [TBL] [Abstract][Full Text] [Related]
74. Superoleophobic behavior induced by nanofeatures on oleophilic surfaces. Ramos SM; Benyagoub A; Canut B; Jamois C Langmuir; 2010 Apr; 26(7):5141-6. PubMed ID: 20000761 [TBL] [Abstract][Full Text] [Related]
75. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces. Iwamatsu M J Colloid Interface Sci; 2006 May; 297(2):772-7. PubMed ID: 16337219 [TBL] [Abstract][Full Text] [Related]
76. Water super-repellent behavior of semicircular micro/nanostructured surfaces. Tie L; Guo Z; Liang Y; Liu W Nanoscale; 2019 Feb; 11(8):3725-3732. PubMed ID: 30742167 [TBL] [Abstract][Full Text] [Related]
77. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate. Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730 [TBL] [Abstract][Full Text] [Related]
78. Thermally activated depinning motion of contact lines in pseudopartial wetting. Du L; Bodiguel H; Colin A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310 [TBL] [Abstract][Full Text] [Related]