These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 19275196)

  • 61. Wetting of regularly structured gold surfaces.
    Abdelsalam ME; Bartlett PN; Kelf T; Baumberg J
    Langmuir; 2005 Mar; 21(5):1753-7. PubMed ID: 15723469
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design of highly oleophobic cellulose surfaces from structured silicon templates.
    Aulin C; Yun SH; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2443-52. PubMed ID: 20356113
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wetting behavior and drainage of water droplets on microgrooved brass surfaces.
    Rahman MA; Jacobi AM
    Langmuir; 2012 Sep; 28(37):13441-51. PubMed ID: 22909187
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Wetting of nanogrooved polymer surfaces.
    Hirvi JT; Pakkanen TA
    Langmuir; 2007 Jul; 23(14):7724-9. PubMed ID: 17559245
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces.
    Anantharaju N; Panchagnula MV; Vedantam S; Neti S; Tatic-Lucic S
    Langmuir; 2007 Nov; 23(23):11673-6. PubMed ID: 17935366
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time.
    Li X; Ma X; Lan Z
    Langmuir; 2010 Apr; 26(7):4831-8. PubMed ID: 20151667
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wetting study of patterned surfaces for superhydrophobicity.
    Bhushan B; Chae Jung Y
    Ultramicroscopy; 2007 Oct; 107(10-11):1033-41. PubMed ID: 17553620
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces.
    Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH
    Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces.
    Hansson PM; Hormozan Y; Brandner BD; Linnros J; Claesson PM; Swerin A; Schoelkopf J; Gane PA; Thormann E
    Langmuir; 2012 Jul; 28(30):11121-30. PubMed ID: 22769744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces.
    Kulinich SA; Farzaneh M
    Langmuir; 2009 Aug; 25(16):8854-6. PubMed ID: 19719211
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Superoleophobic behavior induced by nanofeatures on oleophilic surfaces.
    Ramos SM; Benyagoub A; Canut B; Jamois C
    Langmuir; 2010 Apr; 26(7):5141-6. PubMed ID: 20000761
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces.
    Iwamatsu M
    J Colloid Interface Sci; 2006 May; 297(2):772-7. PubMed ID: 16337219
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Water super-repellent behavior of semicircular micro/nanostructured surfaces.
    Tie L; Guo Z; Liang Y; Liu W
    Nanoscale; 2019 Feb; 11(8):3725-3732. PubMed ID: 30742167
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate.
    Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V
    Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermally activated depinning motion of contact lines in pseudopartial wetting.
    Du L; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A review of factors that affect contact angle and implications for flotation practice.
    Chau TT; Bruckard WJ; Koh PT; Nguyen AV
    Adv Colloid Interface Sci; 2009 Sep; 150(2):106-15. PubMed ID: 19664743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.