These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86. Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery. Broje V; Keller AA J Colloid Interface Sci; 2007 Jan; 305(2):286-92. PubMed ID: 17064718 [TBL] [Abstract][Full Text] [Related]
87. Anisotropic wetting of microstructured surfaces as a function of surface chemistry. Neuhaus S; Spencer ND; Padeste C ACS Appl Mater Interfaces; 2012 Jan; 4(1):123-30. PubMed ID: 22148671 [TBL] [Abstract][Full Text] [Related]
88. Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers. Morita M; Koga T; Otsuka H; Takahara A Langmuir; 2005 Feb; 21(3):911-8. PubMed ID: 15667167 [TBL] [Abstract][Full Text] [Related]
89. On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmann approach. Zhang J; Kwok DY J Colloid Interface Sci; 2005 Feb; 282(2):434-8. PubMed ID: 15589550 [TBL] [Abstract][Full Text] [Related]
90. Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces. Lv P; Xue Y; Liu H; Shi Y; Xi P; Lin H; Duan H Langmuir; 2015 Feb; 31(4):1248-54. PubMed ID: 25548941 [TBL] [Abstract][Full Text] [Related]
91. Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability. Zhang P; Wang S; Wang S; Jiang L Small; 2015 Apr; 11(16):1939-46. PubMed ID: 25504764 [TBL] [Abstract][Full Text] [Related]
93. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size. Sommers AD; Jacobi AM J Colloid Interface Sci; 2008 Dec; 328(2):402-11. PubMed ID: 18930243 [TBL] [Abstract][Full Text] [Related]
94. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis. Mettu S; Chaudhury MK Langmuir; 2011 Aug; 27(16):10327-33. PubMed ID: 21728326 [TBL] [Abstract][Full Text] [Related]
95. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. Li W; Amirfazli A J Colloid Interface Sci; 2005 Dec; 292(1):195-201. PubMed ID: 15979631 [TBL] [Abstract][Full Text] [Related]
96. Phase field modeling of hysteresis in sessile drops. Vedantam S; Panchagnula MV Phys Rev Lett; 2007 Oct; 99(17):176102. PubMed ID: 17995349 [TBL] [Abstract][Full Text] [Related]
97. Air at hydrophobic surfaces and kinetics of three phase contact formation. Krasowska M; Zawala J; Malysa K Adv Colloid Interface Sci; 2009; 147-148():155-69. PubMed ID: 19036351 [TBL] [Abstract][Full Text] [Related]
99. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Wier KA; McCarthy TJ Langmuir; 2006 Mar; 22(6):2433-6. PubMed ID: 16519435 [TBL] [Abstract][Full Text] [Related]
100. Intermediate wetting state at nano/microstructured surfaces. Nagayama G; Zhang D Soft Matter; 2020 Apr; 16(14):3514-3521. PubMed ID: 32215385 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]