These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19275215)

  • 1. In situ crosslinkable hydrogel formed from a polysaccharide-based hydrogelator.
    Song F; Zhang LM; Li NN; Shi JF
    Biomacromolecules; 2009 Apr; 10(4):959-65. PubMed ID: 19275215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive supramolecular hydrogel with controlled dual drug release characteristics.
    Ma D; Tu K; Zhang LM
    Biomacromolecules; 2010 Sep; 11(9):2204-12. PubMed ID: 20831271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel.
    Song F; Zhang LM
    J Phys Chem B; 2008 Nov; 112(44):13749-55. PubMed ID: 18855437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from hydrogel containing albumin as crosslinker.
    Tada D; Tanabe T; Tachibana A; Yamauchi K
    J Biosci Bioeng; 2005 Nov; 100(5):551-5. PubMed ID: 16384795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a temperature-sensitive composite hydrogel for drug delivery applications.
    Ramanan RM; Chellamuthu P; Tang L; Nguyen KT
    Biotechnol Prog; 2006; 22(1):118-25. PubMed ID: 16454501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles.
    Song F; Zhang LM; Shi JF; Li NN
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):486-91. PubMed ID: 20709503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme.
    Ma D; Zhang LM; Xie X; Liu T; Xie MQ
    J Colloid Interface Sci; 2011 Jul; 359(2):399-406. PubMed ID: 21536304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of osteonectin-derived peptide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds.
    Sarvestani AS; He X; Jabbari E
    Biopolymers; 2007 Mar; 85(4):370-8. PubMed ID: 17183515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of liposomes-in-alginate (LIA) for protein delivery system.
    Dai C; Wang B; Zhao H; Li B; Wang J
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):205-10. PubMed ID: 16446077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior.
    Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z
    Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A controlled-release strategy for the generation of cross-linked hydrogel microstructures.
    Franzesi GT; Ni B; Ling Y; Khademhosseini A
    J Am Chem Soc; 2006 Nov; 128(47):15064-5. PubMed ID: 17117838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation of functional chitosan thermosensitive hydrogel for slow release both rhBMP-2 and chlorhexidine].
    Ma ZW; Wang R; Wu ZF; Chen D; Zhang BL; He W; Wang XJ; Liu Q; Xu J; Zhu H
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1049-54. PubMed ID: 18257235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting.
    Li FQ; Su H; Wang J; Liu JY; Zhu QG; Fei YB; Pan YH; Hu JH
    Int J Pharm; 2008 Feb; 349(1-2):274-82. PubMed ID: 17870261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization.
    Ishihara M; Obara K; Ishizuka T; Fujita M; Sato M; Masuoka K; Saito Y; Yura H; Matsui T; Hattori H; Kikuchi M; Kurita A
    J Biomed Mater Res A; 2003 Mar; 64(3):551-9. PubMed ID: 12579570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique.
    Wells LA; Sheardown H
    Eur J Pharm Biopharm; 2007 Mar; 65(3):329-35. PubMed ID: 17156984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.
    Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.