These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19275299)

  • 1. Acoustic field in a quasi-spherical resonator: unified perturbation model.
    Guianvarc'h C; Pitre L; Bruneau M; Bruneau AM
    J Acoust Soc Am; 2009 Mar; 125(3):1416-25. PubMed ID: 19275299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
    Dellavale D; Urteaga R; Bonetto FJ
    J Acoust Soc Am; 2010 Jan; 127(1):186-97. PubMed ID: 20058963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the Boltzmann constant using a quasi-spherical acoustic resonator.
    Pitre L; Sparasci F; Truong D; Guillou A; Risegari L; Himbert ME
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4014-27. PubMed ID: 21930563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.
    Guianvarc'h C; Gavioso RM; Benedetto G; Pitre L; Bruneau M
    Rev Sci Instrum; 2009 Jul; 80(7):074901. PubMed ID: 19655971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical and numerical study of acoustic mismatch effects on internal dielectrically transduced MEMS resonators.
    Hwang E; Bhave S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1664-72. PubMed ID: 20639160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bistable and dynamic states of parametrically excited ultrasound in a fluid-filled interferometer.
    Pérez-Arjona I; Sánchez-Morcillo VJ; Espinosa V
    J Acoust Soc Am; 2009 Jun; 125(6):3555-60. PubMed ID: 19507937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.
    Pensala T; Ylilammi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1731-44. PubMed ID: 19686989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant frequency shifts induced by a large spherical object in an air-filled acoustic cavity.
    Cordero ML; Mujica N
    J Acoust Soc Am; 2007 Jun; 121(6):EL244-50. PubMed ID: 17552576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of water column variability on horizontal wave number estimation and mode based geoacoustic inversion results.
    Becker KM; Frisk GV
    J Acoust Soc Am; 2008 Feb; 123(2):658-66. PubMed ID: 18247870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the acoustical performance of enclosures using a hybrid statistical energy analysis: image source model.
    Sgard F; Nelisse H; Atalla N; Amedin CK; Oddo R
    J Acoust Soc Am; 2010 Feb; 127(2):784-95. PubMed ID: 20136201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.
    Wilson PS; Dunton KH
    J Acoust Soc Am; 2009 Apr; 125(4):1951-9. PubMed ID: 19354371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical approximations for the modal acoustic impedances of simply supported, rectangular plates.
    Graham WR
    J Acoust Soc Am; 2007 Aug; 122(2):719-30. PubMed ID: 17672622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency geoacoustic model for the effective properties of sandy seabottoms.
    Zhou JX; Zhang XZ; Knobles DP
    J Acoust Soc Am; 2009 May; 125(5):2847-66. PubMed ID: 19425630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capture of instantaneous temperature in oscillating flows: use of constant-voltage anemometry to correct the thermal lag of cold wires operated by constant-current anemometry.
    Berson A; Poignand G; Blanc-Benon P; Comte-Bellot G
    Rev Sci Instrum; 2010 Jan; 81(1):015102. PubMed ID: 20113124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of nonlinear acoustic plane waves in an elastic gas-filled tube.
    Bednarik M; Cervenka M
    J Acoust Soc Am; 2009 Oct; 126(4):1681-9. PubMed ID: 19813784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analog of the Kanazawa-Gordon formula for cylindrical resonators.
    Kiełczyński P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1367-72. PubMed ID: 15600078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound transmission loss of rectangular and slit-shaped apertures: experimental results and correlation with a modal model.
    Trompette N; Barbry JL; Sgard F; Nelisse H
    J Acoust Soc Am; 2009 Jan; 125(1):31-41. PubMed ID: 19173392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.