These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19275317)

  • 1. Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot.
    Keefe DH; Schairer KS; Ellison JC; Fitzpatrick DF; Jesteadt W
    J Acoust Soc Am; 2009 Mar; 125(3):1595-604. PubMed ID: 19275317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overshoot measured physiologically and psychophysically in the same human ears.
    Walsh KP; Pasanen EG; McFadden D
    Hear Res; 2010 Sep; 268(1-2):22-37. PubMed ID: 20430072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency specificity and left-ear advantage of medial olivocochlear efferent modulation: a study based on stimulus frequency otoacoustic emission.
    Xing D; Gong Q
    Neuroreport; 2017 Sep; 28(13):775-778. PubMed ID: 28538522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is overshoot caused by an efferent reduction in cochlear gain?
    Fletcher M; de Boer J; Krumbholz K
    Adv Exp Med Biol; 2013; 787():65-72. PubMed ID: 23716210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies.
    Mishra SK; Rodrigo H; Balan JR
    J Speech Lang Hear Res; 2024 Jul; 67(7):2473-2482. PubMed ID: 38820241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS; Keefe DH
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-tone suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Ellison JC; Fitzpatrick DF; Gorga MP
    J Acoust Soc Am; 2008 Mar; 123(3):1479-94. PubMed ID: 18345837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae.
    Avan P; Bonfils P; Loth D; Wit HP
    Hear Res; 1993 Oct; 70(1):109-20. PubMed ID: 8276727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control.
    Althen H; Wittekindt A; Gaese B; Kössl M; Abel C
    J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.
    Dewey JB; Dhar S
    J Acoust Soc Am; 2017 Nov; 142(5):3069. PubMed ID: 29195446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus Frequency Otoacoustic Emissions Provide No Evidence for the Role of Efferents in the Enhancement Effect.
    Beim JA; Elliott M; Oxenham AJ; Wojtczak M
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):613-29. PubMed ID: 26153415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.