These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19275408)

  • 1. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2009 Mar; 130(9):094506. PubMed ID: 19275408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2007 Dec; 127(23):234501. PubMed ID: 18154394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydrodynamic interaction on the equivalent conductivity minimum of electrolyte solutions in solvents of low dielectric constant.
    Yamaguchi T; Shimoda Y; Koda S
    J Chem Phys; 2013 Jan; 138(2):024503. PubMed ID: 23320700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic mechanism of equivalent conductivity minimum of electrolyte solution.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2011 Oct; 135(16):164511. PubMed ID: 22047256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.
    Aburto CC; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic relaxation and hydrodynamic interactions for self-diffusion of ions in electrolyte solutions.
    Dufrêche JF; Jardat M; Turq P; Bagchi B
    J Phys Chem B; 2008 Aug; 112(33):10264-71. PubMed ID: 18605686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity of electrolyte solutions: a mode-coupling theory.
    Contreras-Aburto C; Nägele G
    J Phys Condens Matter; 2012 Nov; 24(46):464108. PubMed ID: 23113963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection method for ionic species based on the electroacoustic effect.
    Cho HR; Park HR; Kim BK; Kim JW; Boo DW; Cho UI; Choi JG
    J Phys Chem B; 2006 Mar; 110(10):5127-31. PubMed ID: 16526756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study on the sound absorption of electrolytic solutions. II. Assignments of relaxations.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2007 Aug; 127(6):064508. PubMed ID: 17705613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport coefficients of aqueous dodecyltrimethylammonium bromide solutions: comparison between experiments, analytical calculations and numerical simulations.
    Jardat M; Durand-Vidal S; Da Mota N; Turq P
    J Chem Phys; 2004 Apr; 120(13):6268-73. PubMed ID: 15267514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical investigations of solvation dynamics of ionic fluids: appropriateness of dielectric theory and the role of DC conductivity.
    Halder M; Headley LS; Mukherjee P; Song X; Petrich JW
    J Phys Chem A; 2006 Jul; 110(28):8623-6. PubMed ID: 16836422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hofmeister effects in surface tension of aqueous electrolyte solution.
    Boström M; Kunz W; Ninham BW
    Langmuir; 2005 Mar; 21(6):2619-23. PubMed ID: 15752061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride.
    Yamaguchi T; Koda S
    J Chem Phys; 2010 Mar; 132(11):114502. PubMed ID: 20331300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.
    Yamaguchi T; Koda S
    J Chem Phys; 2014 Dec; 141(24):244501. PubMed ID: 25554161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical theories of transport in concentrated electrolyte solutions from the MSA.
    Dufrêche JF; Bernard O; Durand-Vidal S; Turq P
    J Phys Chem B; 2005 May; 109(20):9873-84. PubMed ID: 16852194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductivity and electrophoretic mobility of dilute ionic solutions.
    Allison S; Wu H; Twahir U; Pei H
    J Colloid Interface Sci; 2010 Dec; 352(1):1-10. PubMed ID: 20810126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric analysis of nanofiltration membrane in electrolyte solutions: influences of electrolyte concentration and species on membrane permeation.
    Li YH; Zhao KS
    J Colloid Interface Sci; 2004 Aug; 276(1):68-76. PubMed ID: 15219431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of fundamental transport properties and thermodynamics in diglyme-salt solutions.
    Petrowsky M; Frech R; Suarez SN; Jayakody JR; Greenbaum S
    J Phys Chem B; 2006 Nov; 110(46):23012-21. PubMed ID: 17107139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA persistence length revisited.
    Lu Y; Weers B; Stellwagen NC
    Biopolymers; 2001-2002; 61(4):261-75. PubMed ID: 12115141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.