These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19275411)

  • 1. Liquid-vapor equilibrium isotopic fractionation of water: how well can classical water models predict it?
    Chialvo AA; Horita J
    J Chem Phys; 2009 Mar; 130(9):094509. PubMed ID: 19275411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-vapor isotopic fractionation factors of diatomic fluids: a direct comparison between molecular simulation and experiment.
    Chialvo AA; Horita J
    J Chem Phys; 2006 Jul; 125(3):34510. PubMed ID: 16863365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of vapor water clusters at vapor-liquid equilibrium.
    Johansson E; Bolton K; Ahlström P
    J Chem Phys; 2005 Jul; 123(2):24504. PubMed ID: 16050756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum effects in liquid water from an ab initio-based polarizable force field.
    Paesani F; Iuchi S; Voth GA
    J Chem Phys; 2007 Aug; 127(7):074506. PubMed ID: 17718619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical comparison of classical and quantum mechanical treatments of the phase equilibria of water.
    Wick CD; Schenter GK
    J Chem Phys; 2006 Mar; 124(11):114505. PubMed ID: 16555899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes.
    Paricaud P
    J Chem Phys; 2006 Apr; 124(15):154505. PubMed ID: 16674240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of bond flexibility on the vapor-liquid phase equilibria of water.
    Raabe G; Sadus RJ
    J Chem Phys; 2007 Jan; 126(4):044701. PubMed ID: 17286493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-atom force field for the prediction of vapor-liquid equilibria and interfacial properties of HFA134a.
    Peguin RP; Kamath G; Potoff JJ; da Rocha SR
    J Phys Chem B; 2009 Jan; 113(1):178-87. PubMed ID: 19086791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW; Swope WC; Pitera JW
    J Chem Phys; 2005 Nov; 123(19):194504. PubMed ID: 16321097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope quantum effects in water around the freezing point.
    Hart RT; Mei Q; Benmore CJ; Neuefeind JC; Turner JF; Dolgos M; Tomberli B; Egelstaff PA
    J Chem Phys; 2006 Apr; 124(13):134505. PubMed ID: 16613459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of equilibrium solubilities and structure of water in n-alkanes and polyethylene.
    Johansson E; Bolton K; Theodorou DN; Ahlström P
    J Chem Phys; 2007 Jun; 126(22):224902. PubMed ID: 17581078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization.
    Chialvo AA; Moucka F; Vlcek L; Nezbeda I
    J Phys Chem B; 2015 Apr; 119(15):5010-9. PubMed ID: 25803267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reference interaction site model and molecular dynamics study of structure and thermodynamics of methanol.
    Costa D; Munaó G; Saija F; Caccamo C
    J Chem Phys; 2007 Dec; 127(22):224501. PubMed ID: 18081400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of conformational distributions on sigma profiles in COSMO theories.
    Wang S; Stubbs JM; Siepmann JI; Sandler SI
    J Phys Chem A; 2005 Dec; 109(49):11285-94. PubMed ID: 16331913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment.
    Henson BF; Voss LF; Wilson KR; Robinson JM
    J Chem Phys; 2005 Oct; 123(14):144707. PubMed ID: 16238416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gibbs ensemble Monte Carlo simulations of binary mixtures of methane, difluoromethane, and carbon dioxide.
    Do H; Wheatley RJ; Hirst JD
    J Phys Chem B; 2010 Mar; 114(11):3879-86. PubMed ID: 20184300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model.
    Saint-Martin H; Hess B; Berendsen HJ
    J Chem Phys; 2004 Jun; 120(23):11133-43. PubMed ID: 15268143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.