These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 19275444)
1. Microindentation of the young porcine ocular lens. Reilly M; Ravi N J Biomech Eng; 2009 Apr; 131(4):044502. PubMed ID: 19275444 [TBL] [Abstract][Full Text] [Related]
2. Elasticity of the porcine lens capsule as measured by osmotic swelling. Powell TA; Amini R; Oltean A; Barnett VA; Dorfman KD; Segal Y; Barocas VH J Biomech Eng; 2010 Sep; 132(9):091008. PubMed ID: 20815642 [TBL] [Abstract][Full Text] [Related]
4. Can reliable values of Young's modulus be deduced from Fisher's (1971) spinning lens measurements? Burd HJ; Wilde GS; Judge SJ Vision Res; 2006 Apr; 46(8-9):1346-60. PubMed ID: 16125748 [TBL] [Abstract][Full Text] [Related]
5. Dynamic mechanical properties of human lenses. Weeber HA; Eckert G; Soergel F; Meyer CH; Pechhold W; van der Heijde RG Exp Eye Res; 2005 Mar; 80(3):425-34. PubMed ID: 15721624 [TBL] [Abstract][Full Text] [Related]
6. The mechanical response of the porcine lens to a spinning test. Reilly MA; Martius P; Kumar S; Burd HJ; Stachs O Z Med Phys; 2016 Jun; 26(2):127-35. PubMed ID: 26777319 [TBL] [Abstract][Full Text] [Related]
7. On the relationship between lens stiffness and accommodative amplitude. Weeber HA; van der Heijde RG Exp Eye Res; 2007 Nov; 85(5):602-7. PubMed ID: 17720158 [TBL] [Abstract][Full Text] [Related]
8. Viscoelastic shear properties of the fresh porcine lens. Schachar RA; Chan RW; Fu M Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268 [TBL] [Abstract][Full Text] [Related]
9. Dynamic multi-arm radial lens stretcher: a robotic analog of the ciliary body. Reilly MA; Hamilton PD; Ravi N Exp Eye Res; 2008 Jan; 86(1):157-64. PubMed ID: 18068804 [TBL] [Abstract][Full Text] [Related]
10. Internal deformation of the human crystalline lens during accommodation. Weeber HA; van der Heijde RG Acta Ophthalmol; 2008 Sep; 86(6):642-7. PubMed ID: 18752516 [TBL] [Abstract][Full Text] [Related]
11. Pig lenses in a lens stretcher: implications for presbyopia treatment. Kammel R; Ackermann R; Mai T; Damm C; Nolte S Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204 [TBL] [Abstract][Full Text] [Related]
12. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Heys KR; Cram SL; Truscott RJ Mol Vis; 2004 Dec; 10():956-63. PubMed ID: 15616482 [TBL] [Abstract][Full Text] [Related]
16. The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures. Gilmartin B Ophthalmic Physiol Opt; 1995 Sep; 15(5):431-7. PubMed ID: 8524570 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher. Reilly MA; Hamilton PD; Perry G; Ravi N Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865 [TBL] [Abstract][Full Text] [Related]
19. Relation between injected volume and optical parameters in refilled isolated porcine lenses. Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485 [TBL] [Abstract][Full Text] [Related]
20. Modeling internal stress distributions in the human lens: can opponent theories coexist? Belaidi A; Pierscionek BK J Vis; 2007 Aug; 7(11):1.1-12. PubMed ID: 17997656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]