BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19275471)

  • 21. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury.
    Rao JS; Zhao C; Zhang A; Duan H; Hao P; Wei RH; Shang J; Zhao W; Liu Z; Yu J; Fan KS; Tian Z; He Q; Song W; Yang Z; Sun YE; Li X
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5595-E5604. PubMed ID: 29844162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilateral cervical contusion spinal cord injury in rats.
    Anderson KD; Sharp KG; Steward O
    Exp Neurol; 2009 Nov; 220(1):9-22. PubMed ID: 19559699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery.
    Wang Z; Reynolds A; Kirry A; Nienhaus C; Blackmore MG
    J Neurosci; 2015 Feb; 35(7):3139-45. PubMed ID: 25698749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques.
    Nakagawa H; Ninomiya T; Yamashita T; Takada M
    Sci Rep; 2015 Jul; 5():11986. PubMed ID: 26132896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration.
    Ruitenberg MJ; Levison DB; Lee SV; Verhaagen J; Harvey AR; Plant GW
    Brain; 2005 Apr; 128(Pt 4):839-53. PubMed ID: 15716305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.
    Taylor SJ; Sakiyama-Elbert SE
    J Control Release; 2006 Nov; 116(2):204-10. PubMed ID: 16919351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury.
    Lewandowski G; Steward O
    J Neurosci; 2014 Jul; 34(30):9951-62. PubMed ID: 25057197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats.
    Petrosyan HA; Alessi V; Lasek K; Gumudavelli S; Muffaletto R; Liang L; Collins WF; Levine J; Arvanian VL
    J Neurosci; 2023 Mar; 43(9):1492-1508. PubMed ID: 36653191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons.
    Almutiri S; Berry M; Logan A; Ahmed Z
    Sci Rep; 2018 Jul; 8(1):10707. PubMed ID: 30013050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord.
    Sayer FT; Oudega M; Hagg T
    Exp Neurol; 2002 May; 175(1):282-96. PubMed ID: 12009779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats.
    Hagg T; Baker KA; Emsley JG; Tetzlaff W
    Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury.
    Han Q; Xie Y; Ordaz JD; Huh AJ; Huang N; Wu W; Liu N; Chamberlain KA; Sheng ZH; Xu XM
    Cell Metab; 2020 Mar; 31(3):623-641.e8. PubMed ID: 32130884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury.
    Lang C; Guo X; Kerschensteiner M; Bareyre FM
    PLoS One; 2012; 7(1):e30461. PubMed ID: 22291960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord.
    Chen Q; Zhou L; Shine HD
    J Neurotrauma; 2006 Aug; 23(8):1254-60. PubMed ID: 16928183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3.
    Godinho MJ; Teh L; Pollett MA; Goodman D; Hodgetts SI; Sweetman I; Walters M; Verhaagen J; Plant GW; Harvey AR
    PLoS One; 2013; 8(8):e69987. PubMed ID: 23950907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.