These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19275731)

  • 1. Physiological and pathophysiological functions of SIRT1.
    Wojcik M; Mac-Marcjanek K; Wozniak LA
    Mini Rev Med Chem; 2009 Mar; 9(3):386-94. PubMed ID: 19275731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of NAD+ dependent histone deacetylases (sirtuins).
    Neugebauer RC; Sippl W; Jung M
    Curr Pharm Des; 2008; 14(6):562-73. PubMed ID: 18336301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An update on lysine deacylases targeting the expanding "acylome".
    Olsen CA
    ChemMedChem; 2014 Mar; 9(3):434-7. PubMed ID: 24375937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative and pharmacophore model for deacetylase SIRT1.
    Huhtiniemi T; Wittekindt C; Laitinen T; Leppänen J; Salminen A; Poso A; Lahtela-Kakkonen M
    J Comput Aided Mol Des; 2006 Sep; 20(9):589-99. PubMed ID: 17103016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRTUIN 1: regulating the regulator.
    Zschoernig B; Mahlknecht U
    Biochem Biophys Res Commun; 2008 Nov; 376(2):251-5. PubMed ID: 18774777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation.
    Van Dyke MW
    ChemMedChem; 2014 Mar; 9(3):511-22. PubMed ID: 24449617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT1, neuronal cell survival and the insulin/IGF-1 aging paradox.
    Tang BL
    Neurobiol Aging; 2006 Mar; 27(3):501-5. PubMed ID: 16464659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing.
    Trapp J; Jung M
    Curr Drug Targets; 2006 Nov; 7(11):1553-60. PubMed ID: 17100594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival.
    Ford J; Jiang M; Milner J
    Cancer Res; 2005 Nov; 65(22):10457-63. PubMed ID: 16288037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone deacetylases--an important class of cellular regulators with a variety of functions.
    Hildmann C; Riester D; Schwienhorst A
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):487-97. PubMed ID: 17377789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone deacetylases as targets for the treatment of human neurodegenerative diseases.
    D'Mello SR
    Drug News Perspect; 2009 Nov; 22(9):513-24. PubMed ID: 20072728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity.
    Pfister JA; Ma C; Morrison BE; D'Mello SR
    PLoS One; 2008; 3(12):e4090. PubMed ID: 19116652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.
    Brunet A; Sweeney LB; Sturgill JF; Chua KF; Greer PL; Lin Y; Tran H; Ross SE; Mostoslavsky R; Cohen HY; Hu LS; Cheng HL; Jedrychowski MP; Gygi SP; Sinclair DA; Alt FW; Greenberg ME
    Science; 2004 Mar; 303(5666):2011-5. PubMed ID: 14976264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.
    Cohen HY; Miller C; Bitterman KJ; Wall NR; Hekking B; Kessler B; Howitz KT; Gorospe M; de Cabo R; Sinclair DA
    Science; 2004 Jul; 305(5682):390-2. PubMed ID: 15205477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation.
    Hisahara S; Chiba S; Matsumoto H; Tanno M; Yagi H; Shimohama S; Sato M; Horio Y
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15599-604. PubMed ID: 18829436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity.
    Garske AL; Denu JM
    Biochemistry; 2006 Jan; 45(1):94-101. PubMed ID: 16388584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of enzymatically active recombinant class III protein deacetylases.
    North BJ; Schwer B; Ahuja N; Marshall B; Verdin E
    Methods; 2005 Aug; 36(4):338-45. PubMed ID: 16091304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro assays for the determination of histone deacetylase activity.
    Heltweg B; Trapp J; Jung M
    Methods; 2005 Aug; 36(4):332-7. PubMed ID: 16087348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).
    Trapp J; Meier R; Hongwiset D; Kassack MU; Sippl W; Jung M
    ChemMedChem; 2007 Oct; 2(10):1419-31. PubMed ID: 17628866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.