These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19276239)

  • 1. Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study.
    Chou YH; Wagenaar RC; Saltzman E; Giphart JE; Young D; Davidsdottir R; Cronin-Golomb A
    J Gerontol B Psychol Sci Soc Sci; 2009 Mar; 64(2):222-31. PubMed ID: 19276239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of virtual reality on gait variability.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Jul; 14(3):239-56. PubMed ID: 20587300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging affects the ability to use optic flow in the control of heading during locomotion.
    Berard JR; Fung J; McFadyen BJ; Lamontagne A
    Exp Brain Res; 2009 Apr; 194(2):183-90. PubMed ID: 19139863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction.
    Mulavara AP; Richards JT; Ruttley T; Marshburn A; Nomura Y; Bloomberg JJ
    Exp Brain Res; 2005 Oct; 166(2):210-9. PubMed ID: 16034569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Parkinson's disease on optic flow perception for heading direction during navigation.
    Lin CC; Wagenaar RC; Young D; Saltzman EL; Ren X; Neargarder S; Cronin-Golomb A
    Exp Brain Res; 2014 Apr; 232(4):1343-55. PubMed ID: 24510351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of optic flow on spontaneous overground walk-to-run transition.
    De Smet K; Malcolm P; Lenoir M; Segers V; De Clercq D
    Exp Brain Res; 2009 Mar; 193(4):501-8. PubMed ID: 19034439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of visual deprivation on intra-limb coordination during walking in children and adults.
    Hallemans A; Aerts P
    Exp Brain Res; 2009 Sep; 198(1):95-106. PubMed ID: 19618172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of radial direction and eccentricity on acceleration perception.
    Mueller AS; Timney B
    Perception; 2014; 43(8):805-10. PubMed ID: 25549510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroke affects locomotor steering responses to changing optic flow directions.
    Lamontagne A; Fung J; McFadyen B; Faubert J; Paquette C
    Neurorehabil Neural Repair; 2010 Jun; 24(5):457-68. PubMed ID: 20067950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic-flow and egocentric-direction strategies in walking: central vs peripheral visual field.
    Turano KA; Yu D; Hao L; Hicks JC
    Vision Res; 2005 Nov; 45(25-26):3117-32. PubMed ID: 16084556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults.
    Berard JR; Fung J; Lamontagne A
    J Neurophysiol; 2011 Sep; 106(3):1089-96. PubMed ID: 21653718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual control of trunk translation and orientation during locomotion.
    Anson E; Agada P; Kiemel T; Ivanenko Y; Lacquaniti F; Jeka J
    Exp Brain Res; 2014 Jun; 232(6):1941-51. PubMed ID: 24658632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optic flow is used to control human walking.
    Warren WH; Kay BA; Zosh WD; Duchon AP; Sahuc S
    Nat Neurosci; 2001 Feb; 4(2):213-6. PubMed ID: 11175884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered steering strategies for goal-directed locomotion in stroke.
    Aburub AS; Lamontagne A
    J Neuroeng Rehabil; 2013 Jul; 10():80. PubMed ID: 23875969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):165-78. PubMed ID: 20346261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct perception of action-scaled affordances: the shrinking gap problem.
    Fajen BR; Matthis JS
    J Exp Psychol Hum Percept Perform; 2011 Oct; 37(5):1442-57. PubMed ID: 21500936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling steering and judging heading: retinal flow, visual direction, and extraretinal information.
    Wilkie R; Wann J
    J Exp Psychol Hum Percept Perform; 2003 Apr; 29(2):363-78. PubMed ID: 12760621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual kinesthesia and locomotion in Parkinson's disease.
    Schubert M; Prokop T; Brocke F; Berger W
    Mov Disord; 2005 Feb; 20(2):141-50. PubMed ID: 15390031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of human behavior in collision avoidance: a study inside immersive virtual reality.
    Ouellette M; Chagnon M; Faubert J
    Cyberpsychol Behav; 2009 Apr; 12(2):215-8. PubMed ID: 19250010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.