These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19276512)

  • 1. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins.
    Naik MS; Singh SN; Mittal R
    Bioinspir Biomim; 2009 Jun; 4(2):026001. PubMed ID: 19276512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biorobotic pectoral fin for autonomous undersea vehicles.
    Tangorra JL; Davidson SN; Madden PG; Lauder GV; Hunter IW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2726-9. PubMed ID: 17946977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.
    Phelan C; Tangorra J; Lauder G; Hale M
    Bioinspir Biomim; 2010 Sep; 5(3):035003. PubMed ID: 20729572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.
    Alici G; Spinks G; Huynh NN; Sarmadi L; Minato R
    Bioinspir Biomim; 2007 Jun; 2(2):S18-30. PubMed ID: 17671326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trajectory tracking controller for an underwater hexapod vehicle.
    Plamondon N; Nahon M
    Bioinspir Biomim; 2009 Sep; 4(3):036005. PubMed ID: 19726834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorobotic insights into how animals swim.
    Bandyopadhyay PR; Beal DN; Menozzi A
    J Exp Biol; 2008 Jan; 211(Pt 2):206-14. PubMed ID: 18165248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism.
    Wai RJ; Kuo MA; Lee JD
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):439-54. PubMed ID: 18348926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
    Low KH; Chong CW
    Bioinspir Biomim; 2010 Dec; 5(4):046002. PubMed ID: 21068469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biorobotic adhesion in water using suction cups.
    Bandyopadhyay PR; Hrubes JD; Leinhos HA
    Bioinspir Biomim; 2008 Mar; 3():016003. PubMed ID: 18364562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.