These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19276512)

  • 41. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distributed flow sensing for closed-loop speed control of a flexible fish robot.
    Zhang F; Lagor FD; Yeo D; Washington P; Paley DA
    Bioinspir Biomim; 2015 Oct; 10(6):065001. PubMed ID: 26495855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro).
    Villanueva AA; Marut KJ; Michael T; Priya S
    Bioinspir Biomim; 2013 Dec; 8(4):046005. PubMed ID: 24166747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design considerations for an underwater soft-robot inspired from marine invertebrates.
    Krieg M; Sledge I; Mohseni K
    Bioinspir Biomim; 2015 Oct; 10(6):065004. PubMed ID: 26513603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Octopus-inspired robotics. Preface.
    Mazzolai B; Laschi C
    Bioinspir Biomim; 2015 May; 10(3):030301. PubMed ID: 25970854
    [No Abstract]   [Full Text] [Related]  

  • 50. A suite of robust controllers for the manipulation of microscale objects.
    Yang Q; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):113-25. PubMed ID: 18270086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):142-55. PubMed ID: 19150764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.
    Vejdani HR; Blum Y; Daley MA; Hurst JW
    Bioinspir Biomim; 2013 Dec; 8(4):046006. PubMed ID: 24166776
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus sources.
    Rañó I
    Bioinspir Biomim; 2012 Sep; 7(3):036015. PubMed ID: 22585337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pelvic fin locomotor function in fishes: three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss).
    Standen EM
    J Exp Biol; 2008 Sep; 211(Pt 18):2931-42. PubMed ID: 18775930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles.
    Wainwright DK; Lauder GV
    Bioinspir Biomim; 2020 Mar; 15(3):035007. PubMed ID: 32053798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.
    Park YJ; Huh TM; Park D; Cho KJ
    Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots.
    Jusufi A; Kawano DT; Libby T; Full RJ
    Bioinspir Biomim; 2010 Dec; 5(4):045001. PubMed ID: 21098954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired pursuit with a swimming robot using feedback control of an internal rotor.
    Free BA; Lee J; Paley DA
    Bioinspir Biomim; 2020 Mar; 15(3):035005. PubMed ID: 32040943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. First controlled vertical flight of a biologically inspired microrobot.
    Pérez-Arancibia NO; Ma KY; Galloway KC; Greenberg JD; Wood RJ
    Bioinspir Biomim; 2011 Sep; 6(3):036009. PubMed ID: 21878707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.