BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19277611)

  • 1. Monitoring surface-assisted biomolecular assembly by means of evanescent-field-coupled waveguide-mode nanobiosensors.
    Gopinath SC; Awazu K; Fujimaki M; Sugimoto K; Ohki Y; Komatsubara T; Tominaga J; Kumar PK
    Anal Bioanal Chem; 2009 May; 394(2):481-8. PubMed ID: 19277611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring biological interactions using perforated evanescent-field-coupled waveguide-mode nanobiosensors.
    Gopinath SC; Awazu K; Fujimaki M; Tominaga J; Gupta KC; Kumar PK
    Nucleic Acids Symp Ser (Oxf); 2009; (53):93-4. PubMed ID: 19749276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of silica surface with nanosize holes for immobilization of biomolecules and analysis of their interactions.
    Gopinath SC; Awazu K; Fujimaki M; Kumar PK; Komatsubara T
    Anal Chim Acta; 2010 Nov; 680(1-2):72-8. PubMed ID: 20969994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions.
    Gopinath SC; Awazu K; Fujimaki M; Sugimoto K; Ohki Y; Komatsubara T; Tominaga J; Gupta KC; Kumar PK
    Anal Chem; 2008 Sep; 80(17):6602-9. PubMed ID: 18672888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular sensors utilizing waveguide modes excited by evanescent fields.
    Fujimaki M; Rockstuhl C; Wang X; Awazu K; Tominaga J; Ikeda T; Koganezawa Y; Ohki Y
    J Microsc; 2008 Feb; 229(Pt 2):320-6. PubMed ID: 18304092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface functionalization chemistries on highly sensitive silica-based sensor chips.
    Gopinath SC; Awazu K; Fujimaki M; Shimizu K; Mizutani W; Tsukagoshi K
    Analyst; 2012 Aug; 137(15):3520-7. PubMed ID: 22705905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided mode biosensor based on grating coupled porous silicon waveguide.
    Wei X; Weiss SM
    Opt Express; 2011 Jun; 19(12):11330-9. PubMed ID: 21716363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.
    Ozhikandathil J; Packirisamy M
    J Biophotonics; 2013 May; 6(5):457-67. PubMed ID: 22829397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection.
    Huang JG; Lee CL; Lin HM; Chuang TL; Wang WS; Juang RH; Wang CH; Lee CK; Lin SM; Lin CW
    Biosens Bioelectron; 2006 Oct; 22(4):519-25. PubMed ID: 16962763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.
    Wang X; Fujimaki M; Kato T; Nomura K; Awazu K; Ohki Y
    Opt Express; 2011 Oct; 19(21):20205-13. PubMed ID: 21997031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a biosensor based on anti resonant reflecting optical waveguide fabricated from porous silicon.
    Hiraoui M; Haji L; Guendouz M; Lorrain N; Moadhen A; Oueslati M
    Biosens Bioelectron; 2012; 36(1):212-6. PubMed ID: 22560108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based waveguides: novel method for detecting biological activity.
    Kim J; Kasture M; Hwang T; Kulkarni A; Amin R; Park S; Kim T; Gosavi S
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1069-75. PubMed ID: 22569782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories.
    Burns A; Sengupta P; Zedayko T; Baird B; Wiesner U
    Small; 2006 Jun; 2(6):723-6. PubMed ID: 17193111
    [No Abstract]   [Full Text] [Related]  

  • 14. Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating.
    Chien FC; Lin CY; Yih JN; Lee KL; Chang CW; Wei PK; Sun CC; Chen SJ
    Biosens Bioelectron; 2007 May; 22(11):2737-42. PubMed ID: 17178218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature.
    Junesch J; Emilsson G; Xiong K; Kumar S; Sannomiya T; Pace H; Vörös J; Oh SH; Bally M; Dahlin AB
    Nanoscale; 2015 Oct; 7(37):15080-5. PubMed ID: 26351000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale porous silicon waveguide for label-free DNA sensing.
    Rong G; Najmaie A; Sipe JE; Weiss SM
    Biosens Bioelectron; 2008 May; 23(10):1572-6. PubMed ID: 18308536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecule detection via target mediated nanoparticle aggregation and dielectrophoretic impedance measurement.
    Costanzo PJ; Liang E; Patten TE; Collins SD; Smith RL
    Lab Chip; 2005 Jun; 5(6):606-10. PubMed ID: 15915252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal nanostructures for optical biosensing applications.
    Dorfner D; Zabel T; Hürlimann T; Hauke N; Frandsen L; Rant U; Abstreiter G; Finley J
    Biosens Bioelectron; 2009 Aug; 24(12):3688-92. PubMed ID: 19501502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly responsive sensor on a nanostructured surface via the self-assembly of a biomolecule with an evanescent wave technique.
    Hong S; Kang T; Moon J; Oh S; Yi J
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3604-7. PubMed ID: 17252820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of antibody-hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity.
    Wildeboer D; Jiang P; Price RG; Yu S; Jeganathan F; Abuknesha RA
    Talanta; 2010 Apr; 81(1-2):68-75. PubMed ID: 20188889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.