These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19277663)

  • 1. Numerical simulation of blood and interstitial flow through a solid tumor.
    Pozrikidis C
    J Math Biol; 2010 Jan; 60(1):75-94. PubMed ID: 19277663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of fluid flow in solid tumors.
    Pozrikidis C; Farrow DA
    Ann Biomed Eng; 2003 Feb; 31(2):181-94. PubMed ID: 12627826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.
    Soltani M; Chen P
    PLoS One; 2013; 8(6):e67025. PubMed ID: 23840579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modeling of fluid transport in tumors.
    Chapman SJ; Shipley RJ; Jawad R
    Bull Math Biol; 2008 Nov; 70(8):2334-57. PubMed ID: 18818972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.
    Welter M; Rieger H
    PLoS One; 2013; 8(8):e70395. PubMed ID: 23940570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of the growth of uterine myomas.
    Chen CY; Ward JP
    Bull Math Biol; 2014 Dec; 76(12):3088-121. PubMed ID: 25466579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of lymphatic drainage from tissues using homogenization theory.
    Roose T; Swartz MA
    J Biomech; 2012 Jan; 45(1):107-15. PubMed ID: 22036032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; MagaƱa IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis.
    Milosevic MF; Fyles AW; Hill RP
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1111-23. PubMed ID: 10192363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the microvascular tortuosity in tumor transport phenomena.
    Penta R; Ambrosi D
    J Theor Biol; 2015 Jan; 364():80-97. PubMed ID: 25218498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model for Interstitial Drainage Through a Sliding Lymphatic Valve.
    Heppell C; Roose T; Richardson G
    Bull Math Biol; 2015 Jun; 77(6):1101-31. PubMed ID: 25911590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium.
    Possenti L; di Gregorio S; Gerosa FM; Raimondi G; Casagrande G; Costantino ML; Zunino P
    Int J Numer Method Biomed Eng; 2019 Mar; 35(3):e3165. PubMed ID: 30358172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling bacterial clearance using stochastic-differential equations.
    Atalla A; Jeremic A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():746-51. PubMed ID: 21095901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model.
    Jain RK; Tong RT; Munn LL
    Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poroelastic model of transcapillary flow in normal tissue.
    Speziale S; Tenti G; Sivaloganathan S
    Microvasc Res; 2008 Mar; 75(2):285-95. PubMed ID: 17707442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed model of peritoneal fluid absorption.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1862-74. PubMed ID: 16714354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.