These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19277922)

  • 21. Does treadmill exercise improve performance of cognitive or upper-extremity tasks in people with chronic stroke? A randomized cross-over trial.
    Ploughman M; McCarthy J; Bossé M; Sullivan HJ; Corbett D
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2041-7. PubMed ID: 18996231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic interventions to improve upper extremity recovery and function.
    Richards L; Pohl P
    Clin Geriatr Med; 1999 Nov; 15(4):819-32. PubMed ID: 10499937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method for the evidence-based reviews on occupational therapy and stroke.
    Arbesman M; Lieberman D; Berlanstein DR
    Am J Occup Ther; 2015; 69(1):6901180020p1-5. PubMed ID: 25553741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of imagery perspective on occupational performance after stroke: a randomized controlled trial.
    Nilsen DM; Gillen G; DiRusso T; Gordon AM
    Am J Occup Ther; 2012; 66(3):320-9. PubMed ID: 22549597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motor learning of a dynamic balancing task after stroke: implicit implications for stroke rehabilitation.
    Orrell AJ; Eves FF; Masters RS
    Phys Ther; 2006 Mar; 86(3):369-80. PubMed ID: 16506873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does sleep promote motor learning? Implications for physical rehabilitation.
    Siengsukon CF; Boyd LA
    Phys Ther; 2009 Apr; 89(4):370-83. PubMed ID: 19201986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rehabilitation of stroke patients with apraxia: the role of additional cognitive and motor impairments.
    van Heugten CM; Dekker J; Deelman BG; Stehmann-Saris JC; Kinebanian A
    Disabil Rehabil; 2000 Aug; 22(12):547-54. PubMed ID: 11005744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of an intensive, task-specific rehabilitation program for individuals with chronic stroke: a case series.
    Combs SA; Kelly SP; Barton R; Ivaska M; Nowak K
    Disabil Rehabil; 2010; 32(8):669-78. PubMed ID: 20205581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability.
    Bonifer NM; Anderson KM; Arciniegas DB
    Arch Phys Med Rehabil; 2005 Sep; 86(9):1867-73. PubMed ID: 16181956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor tele-rehabilitation in post-stroke patients.
    Piron L; Tonin P; Trivello E; Battistin L; Dam M
    Med Inform Internet Med; 2004 Jun; 29(2):119-25. PubMed ID: 15370992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does Generalization Occur Following Computer-Based Cognitive Retraining?-An Exploratory Study.
    Li K; Alonso J; Chadha N; Pulido J
    Occup Ther Health Care; 2015; 29(3):283-96. PubMed ID: 25993264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Task Oriented Training and Evaluation at Home.
    Rowe VT; Neville M
    OTJR (Thorofare N J); 2018 Jan; 38(1):46-55. PubMed ID: 28856960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of interventions to improve occupational performance of people with cognitive impairments after stroke: an evidence-based review.
    Gillen G; Nilsen DM; Attridge J; Banakos E; Morgan M; Winterbottom L; York W
    Am J Occup Ther; 2015; 69(1):6901180040p1-9. PubMed ID: 25553743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined cognitive and motor training improves the outcome in the early phase after stroke and prevents a decline of executive functions: A pilot study.
    Eschweiler M; Bohr L; Kessler J; Fink GR; Kalbe E; Onur OA
    NeuroRehabilitation; 2021; 48(1):97-108. PubMed ID: 33386825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active finger extension predicts outcomes after constraint-induced movement therapy for individuals with hemiparesis after stroke.
    Fritz SL; Light KE; Patterson TS; Behrman AL; Davis SB
    Stroke; 2005 Jun; 36(6):1172-7. PubMed ID: 15890987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life.
    Wu CY; Chen CL; Tsai WC; Lin KC; Chou SH
    Arch Phys Med Rehabil; 2007 Mar; 88(3):273-8. PubMed ID: 17321816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occupational therapy and neuromotor interventions.
    Conti GE
    Occup Ther Int; 2009; 16(3-4):171-4. PubMed ID: 19517518
    [No Abstract]   [Full Text] [Related]  

  • 38. Exploring a cognitive-based treatment approach to improve motor-based skill performance in chronic stroke: Results of three single case experiments.
    McEwen SE; Polatajko HJ; Huijbregts MP; Ryan JD
    Brain Inj; 2009 Dec; 23(13-14):1041-53. PubMed ID: 19909052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New directions in occupational therapy: implementation of the task-oriented approach in conjunction with cortical stimulation after stroke.
    Bravi L; Stoykov ME
    Top Stroke Rehabil; 2007; 14(6):68-73. PubMed ID: 18174117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved function of hemiplegic upper extremity after cognitive sensory motor training therapy in chronic stroke patients: preliminary report of a case series.
    Wongphaet P; Butrach W; Sangkrai S; Jitpraphai C
    J Med Assoc Thai; 2003 Jun; 86(6):579-84. PubMed ID: 12924807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.