These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19278)

  • 21. Interaction between NADH and succinate during simultaneous oxidation by non-phosphorylating submitochondrial particles from bovine heart.
    Davis EJ; Blair PV; Mahoney AJ
    Biochim Biophys Acta; 1969 Apr; 172(3):574-7. PubMed ID: 4305700
    [No Abstract]   [Full Text] [Related]  

  • 22. [Effect of luliberin on the activities of mitochondrial respiratory enzymes].
    Bakalkin GIa; Krasinskaia IP; Komissarova EN; Iaguzhinskiĭ LS; Isachenkov VA
    Biokhimiia; 1979 Aug; 44(8):1353-60. PubMed ID: 387096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J; Hoek JB; Ernster L
    Biochim Biophys Acta; 1973 Jun; 305(3):694-8. PubMed ID: 4147424
    [No Abstract]   [Full Text] [Related]  

  • 24. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucagon treatment stimulates the oxidation of durohydroquinone by rat liver mitochondria.
    Titheradge MA; Haynes RC
    FEBS Lett; 1979 Oct; 106(2):330-4. PubMed ID: 499518
    [No Abstract]   [Full Text] [Related]  

  • 26. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J; Montelius J; Bäckström D; Ernster L
    Biochim Biophys Acta; 1978 Mar; 501(3):370-80. PubMed ID: 24468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The temperature dependence of oxidative phosphorylation and of the activity of various enzyme systems in liver mitochondria from cold- and warm-blooded animals.
    Smith CL
    Comp Biochem Physiol B; 1973 Nov; 46(3):445-61. PubMed ID: 4148232
    [No Abstract]   [Full Text] [Related]  

  • 29. [Effect of insulin and triiodothyronine on liver mitochondria in vivo].
    Schäfer G; Nägel L
    Hoppe Seylers Z Physiol Chem; 1968 Oct; 349(10):1365-77. PubMed ID: 4387017
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ.
    Uyemura SA; Luo S; Vieira M; Moreno SN; Docampo R
    J Biol Chem; 2004 Jan; 279(1):385-93. PubMed ID: 14561763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy transduction in photosynthetic bacteria. VI. Respiratory sites of energy conservation in membranes from dark-grown cells of Rhodopseudomonas capsulata.
    Baccarini Melandri A; Zannoni D; Melandri BA
    Biochim Biophys Acta; 1973 Sep; 314(3):298-311. PubMed ID: 4148029
    [No Abstract]   [Full Text] [Related]  

  • 32. The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata.
    La Monica RF; Marrs BL
    Biochim Biophys Acta; 1976 Mar; 423(3):431-9. PubMed ID: 177046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Energy metabolism in Candida tropicalis. Oxidative phosphorylation in Candida tropicalis cultivated on alkanes].
    Gallo M; Azoulay E
    Biochimie; 1974; 56(8):1129-43. PubMed ID: 4155644
    [No Abstract]   [Full Text] [Related]  

  • 34. Inhibition of rat liver mitochondrial oxidative phosphorylation by sulfobromophthalein.
    Killenberg PG; Hoppel CL
    Mol Pharmacol; 1974 Jan; 10(1):108-18. PubMed ID: 4152528
    [No Abstract]   [Full Text] [Related]  

  • 35. Intermediary metabolism of the liver fluke Fasciola hepatica, II. Hydrogen transport and phosphorylation.
    De Zoeten LW; Tipker J
    Hoppe Seylers Z Physiol Chem; 1969 Jun; 350(6):691-5. PubMed ID: 4184206
    [No Abstract]   [Full Text] [Related]  

  • 36. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes.
    Bolter CJ; Chefurka W
    Arch Biochem Biophys; 1990 Apr; 278(1):65-72. PubMed ID: 2321971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topographical definition of new sites on the mitochondrial electron transport chain.
    Harmon HJ; Crane FL
    Biochem Biophys Res Commun; 1974 Jul; 59(1):326-33. PubMed ID: 4152203
    [No Abstract]   [Full Text] [Related]  

  • 38. Electron transport in phosphorylating mitochondria from Tetrahymena pyriformis strain ST.
    Turner G; Lloyd D; Chance B
    J Gen Microbiol; 1971 Mar; 65(3):359-74. PubMed ID: 4326637
    [No Abstract]   [Full Text] [Related]  

  • 39. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.