These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 19278022)
1. Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island. Garron CA; Davis KC; Ernst WR Pest Manag Sci; 2009 Jun; 65(6):688-96. PubMed ID: 19278022 [TBL] [Abstract][Full Text] [Related]
2. Ambient air concentrations of pesticides used in potato cultivation in Prince Edward Island, Canada. White LM; Ernst WR; Julien G; Garron C; Leger M Pest Manag Sci; 2006 Feb; 62(2):126-36. PubMed ID: 16358323 [TBL] [Abstract][Full Text] [Related]
3. Concentrations and environmental risk of chlorothalonil in air near potato fields in Prince Edward Island, Canada. Garron C; Ernst B; Julien G; Losier R; Davis K Pest Manag Sci; 2012 Jan; 68(1):92-100. PubMed ID: 21710553 [TBL] [Abstract][Full Text] [Related]
4. The Washington aerial spray drift study: children's exposure to methamidophos in an agricultural community following fixed-wing aircraft applications. Weppner S; Elgethun K; Lu C; Hebert V; Yost MG; Fenske RA J Expo Sci Environ Epidemiol; 2006 Sep; 16(5):387-96. PubMed ID: 16249796 [TBL] [Abstract][Full Text] [Related]
5. Assessing the genotoxic potential of chlorothalonil drift from potato fields in Prince Edward Island, Canada. Garron C; Knopper LD; Ernst WR; Mineau P Arch Environ Contam Toxicol; 2012 Feb; 62(2):222-32. PubMed ID: 21915760 [TBL] [Abstract][Full Text] [Related]
6. Investigation on downwind short-range transport of pesticides after application in agricultural crops. Siebers J; Binner R; Wittich KP Chemosphere; 2003 May; 51(5):397-407. PubMed ID: 12598005 [TBL] [Abstract][Full Text] [Related]
7. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
8. Children's inhalation exposure to methamidophos from sprayed potato fields in Washington State: exploring the use of probabilistic modeling of meteorological data in exposure assessment. Ramaprasad J; Tsai MG; Fenske RA; Faustman EM; Griffith WC; Felsot AS; Elgethun K; Weppner S; Yost MG J Expo Sci Environ Epidemiol; 2009 Sep; 19(6):613-23. PubMed ID: 18957992 [TBL] [Abstract][Full Text] [Related]
9. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
10. Development of dermal and respiratory sampling procedures for human exposure to pesticides in indoor environments. Fenske RA; Curry PB; Wandelmaier F; Ritter L J Expo Anal Environ Epidemiol; 1991 Jan; 1(1):11-30. PubMed ID: 1824309 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of buffer zone effectiveness in mitigating the risks associated with agricultural runoff in Prince Edward Island. Dunn AM; Julien G; Ernst WR; Cook A; Doe KG; Jackman PM Sci Total Environ; 2011 Feb; 409(5):868-82. PubMed ID: 21163513 [TBL] [Abstract][Full Text] [Related]
12. Direct and indirect drift assessment means. Part 3: field drift experiments. Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826 [TBL] [Abstract][Full Text] [Related]
13. Off-target loss in ornamental nurseries with different spray techniques. Zhu H; Derksen RC; Krause CR; Zondag RH Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508 [TBL] [Abstract][Full Text] [Related]
14. Field experiments to assess approaches for spray drift incident investigation. Rimmer DA; Johnson PD; Kelsey A; Warren ND Pest Manag Sci; 2009 Jun; 65(6):665-71. PubMed ID: 19291679 [TBL] [Abstract][Full Text] [Related]
15. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
16. Modeling of methyl isothiocyanate air concentrations associated with community illnesses following a metam-sodium sprinkler application. O'Malley M; Barry T; Verder-Carlos M; Rubin A Am J Ind Med; 2004 Jul; 46(1):1-15. PubMed ID: 15202120 [TBL] [Abstract][Full Text] [Related]
17. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
18. Estimation of emission fluxes from a horizontal flux budget method, exemplified with determination of pesticide volatilization. Jensen NO; Andersen HV Environ Pollut; 2008 Nov; 156(1):193-8. PubMed ID: 18262316 [TBL] [Abstract][Full Text] [Related]
19. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop. Wolters A; Linnemann V; van de Zande JC; Vereecken H Sci Total Environ; 2008 Nov; 405(1-3):269-77. PubMed ID: 18723207 [TBL] [Abstract][Full Text] [Related]
20. The effect of air support on droplet characteristics and spray drift. Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]