These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19278554)

  • 1. Common themes in nutrient acquisition by plant symbiotic microbes, described by the Gene Ontology.
    Chibucos MC; Tyler BM
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S6. PubMed ID: 19278554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmed cell death in host-symbiont associations, viewed through the Gene Ontology.
    Chibucos MC; Collmer CW; Torto-Alalibo T; Gwinn-Giglio M; Lindeberg M; Li D; Tyler BM
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S5. PubMed ID: 19278553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology.
    Torto-Alalibo T; Collmer CW; Lindeberg M; Bird D; Collmer A; Tyler BM
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S3. PubMed ID: 19278551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions.
    Torto-Alalibo T; Collmer CW; Gwinn-Giglio M
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S1. PubMed ID: 19278549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying themes in microbial associations with animal and plant hosts described using the gene ontology.
    Torto-Alalibo T; Collmer CW; Gwinn-Giglio M; Lindeberg M; Meng S; Chibucos MC; Tseng TT; Lomax J; Biehl B; Ireland A; Bird D; Dean RA; Glasner JD; Perna N; Setubal JC; Collmer A; Tyler BM
    Microbiol Mol Biol Rev; 2010 Dec; 74(4):479-503. PubMed ID: 21119014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology.
    Tseng TT; Tyler BM; Setubal JC
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S2. PubMed ID: 19278550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant pathogens and symbionts target the plant nucleus.
    Tehrani N; Mitra RM
    Curr Opin Microbiol; 2023 Apr; 72():102284. PubMed ID: 36868049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Ontology for type III effectors: capturing processes at the host-pathogen interface.
    Lindeberg M; Collmer A
    Trends Microbiol; 2009 Jul; 17(7):304-11. PubMed ID: 19576777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals.
    Wiesmann CL; Wang NR; Zhang Y; Liu Z; Haney CH
    FEMS Microbiol Rev; 2023 Nov; 47(6):. PubMed ID: 36521845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant evolution driven by interactions with symbiotic and pathogenic microbes.
    Delaux PM; Schornack S
    Science; 2021 Feb; 371(6531):. PubMed ID: 33602828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms.
    Meng S; Torto-Alalibo T; Chibucos MC; Tyler BM; Dean RA
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S7. PubMed ID: 19278555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rulebook for peptide control of legume-microbe endosymbioses.
    Roy S; Müller LM
    Trends Plant Sci; 2022 Sep; 27(9):870-889. PubMed ID: 35246381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Plant-microbe symbioses as an evolutionary continuum].
    Provorov NA
    Zh Obshch Biol; 2009; 70(1):10-34. PubMed ID: 19326852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions.
    Newton AC; Fitt BD; Atkins SD; Walters DR; Daniell TJ
    Trends Microbiol; 2010 Aug; 18(8):365-73. PubMed ID: 20598545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprogramming of plant cells by filamentous plant-colonizing microbes.
    Doehlemann G; Requena N; Schaefer P; Brunner F; O'Connell R; Parker JE
    New Phytol; 2014 Dec; 204(4):803-14. PubMed ID: 25539003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coevolution between Mutualists and Parasites in Symbiotic Communities May Lead to the Evolution of Lower Virulence.
    Nelson PG; May G
    Am Nat; 2017 Dec; 190(6):803-817. PubMed ID: 29166166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Describing commonalities in microbial effector delivery using the Gene Ontology.
    Chibucos MC; Tseng TT; Setubal JC
    Trends Microbiol; 2009 Jul; 17(7):312-9. PubMed ID: 19576779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defensive Symbiosis and the Evolution of Virulence.
    Nelson P; May G
    Am Nat; 2020 Sep; 196(3):333-343. PubMed ID: 32813997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations.
    Sun Y; Wang M; Mur LAJ; Shen Q; Guo S
    Physiol Plant; 2021 Apr; 171(4):771-784. PubMed ID: 33341944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalisation: A strategy for optimising symbiosis and tradeoff management.
    Mohd-Radzman NA; Drapek C
    Plant Cell Environ; 2023 Oct; 46(10):2998-3011. PubMed ID: 36717758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.