These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19278759)

  • 1. The basic science of bone induction.
    Heliotis M; Ripamonti U; Ferretti C; Kerawala C; Mantalaris A; Tsiridis E
    Br J Oral Maxillofac Surg; 2009 Oct; 47(7):511-4. PubMed ID: 19278759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone morphogenetic proteins and the induction of bone formation: from laboratory to patients.
    Ripamonti U; Heliotis M; Ferretti C
    Oral Maxillofac Surg Clin North Am; 2007 Nov; 19(4):575-89, vii. PubMed ID: 18088907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotropism of bone morphogenetic proteins: from bone induction to cementogenesis and periodontal ligament regeneration.
    Ripamonti U; Teare J; Petit JC
    J Int Acad Periodontol; 2006 Jan; 8(1):23-32. PubMed ID: 16459886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble osteogenic molecular signals and the induction of bone formation.
    Ripamonti U
    Biomaterials; 2006 Feb; 27(6):807-22. PubMed ID: 16213014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone morphogenetic proteins in craniofacial and periodontal tissue engineering: experimental studies in the non-human primate Papio ursinus.
    Ripamonti U; Herbst NN; Ramoshebi LN
    Cytokine Growth Factor Rev; 2005 Jun; 16(3):357-68. PubMed ID: 15951219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.
    Ripamonti U; Parak R; Klar RM; Dickens C; Dix-Peek T; Duarte R
    Biomaterials; 2016 Oct; 104():279-96. PubMed ID: 27474964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cementogenesis and the induction of periodontal tissue regeneration by the osteogenic proteins of the transforming growth factor-beta superfamily.
    Ripamonti U; Petit JC; Teare J
    J Periodontal Res; 2009 Apr; 44(2):141-52. PubMed ID: 18842117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives in regenerative medicine and tissue engineering of bone.
    Ripamonti U; Tsiridis E; Ferretti C; Kerawala CJ; Mantalaris A; Heliotis M
    Br J Oral Maxillofac Surg; 2011 Oct; 49(7):507-9. PubMed ID: 21144628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving concepts in bone tissue engineering.
    Cowan CM; Soo C; Ting K; Wu B
    Curr Top Dev Biol; 2005; 66():239-85. PubMed ID: 15797456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologic augmentation of polymer scaffolds for bone repair.
    Guldberg RE; Oest ME; Dupont K; Peister A; Deutsch E; Kolambkar Y; Mooney D
    J Musculoskelet Neuronal Interact; 2007; 7(4):333-4. PubMed ID: 18094499
    [No Abstract]   [Full Text] [Related]  

  • 11. Biomimetic matrices self-initiating the induction of bone formation.
    Ripamonti U; Roden LC; Ferretti C; Klar RM
    J Craniofac Surg; 2011 Sep; 22(5):1859-70. PubMed ID: 21959451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental induction of heterotopic bone.
    Ekelund A; Brosjö O; Nilsson OS
    Clin Orthop Relat Res; 1991 Feb; (263):102-12. PubMed ID: 1899633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of morphogenetic proteins in skeletal tissue engineering and regeneration.
    Reddi AH
    Nat Biotechnol; 1998 Mar; 16(3):247-52. PubMed ID: 9528003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation.
    Chang SC; Tai CL; Chung HY; Lin TM; Jeng LB
    Artif Organs; 2009 Apr; 33(4):301-8. PubMed ID: 19335406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery.
    Ripamonti U; Ferretti C; Teare J; Blann L
    J Craniofac Surg; 2009 Sep; 20(5):1544-55. PubMed ID: 19816294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble and insoluble signals and the induction of bone formation: molecular therapeutics recapitulating development.
    Ripamonti U; Ferretti C; Heliotis M
    J Anat; 2006 Oct; 209(4):447-68. PubMed ID: 17005018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair.
    Buxton PG; Cobourne MT
    Oral Dis; 2007 Sep; 13(5):452-60. PubMed ID: 17714347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor.
    Hayashi C; Hasegawa U; Saita Y; Hemmi H; Hayata T; Nakashima K; Ezura Y; Amagasa T; Akiyoshi K; Noda M
    J Cell Physiol; 2009 Jul; 220(1):1-7. PubMed ID: 19301257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoinduction: translating preclinical promise into clinical reality.
    Ferretti C; Ripamonti U; Tsiridis E; Kerawala CJ; Mantalaris A; Heliotis M
    Br J Oral Maxillofac Surg; 2010 Oct; 48(7):536-9. PubMed ID: 20430492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.