These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19278760)

  • 1. Larval performance of the mustard leaf beetle (Phaedon cochleariae, Coleoptera, Chrysomelidae) on white mustard (Sinapis alba) and watercress (Nasturtium officinale) leaves in dependence of plant exposure to ultraviolet radiation.
    Reifenrath K; Müller C
    Environ Pollut; 2009 Jul; 157(7):2053-60. PubMed ID: 19278760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae.
    Reifenrath K; Müller C
    Phytochemistry; 2007 Mar; 68(6):875-85. PubMed ID: 17257632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phaedon cochleariae (F.) performance on different crucifer varieties with different glucosinolate profiles.
    Uddin MM; Ulrichs C; Mewis I
    Commun Agric Appl Biol Sci; 2008; 73(3):563-72. PubMed ID: 19226796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle.
    Müller C; Vogel H; Heckel DG
    Mol Ecol; 2017 Nov; 26(22):6370-6383. PubMed ID: 28921776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult beetles compensate for poor larval food conditions.
    Müller T; Müller C
    J Insect Physiol; 2016 May; 88():24-32. PubMed ID: 26906247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The consequences of alternating diet on performance and food preferences of a specialist leaf beetle.
    Tremmel M; Müller C
    J Insect Physiol; 2013 Aug; 59(8):840-7. PubMed ID: 23727303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae.
    Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C
    Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological modulation of environmental stress: interactions between ultraviolet radiation, epibiotic snail embryos, plants and herbivores.
    Wahl M
    J Anim Ecol; 2008 May; 77(3):549-57. PubMed ID: 18217942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult beetle grazing induces willow trichome defence against subsequent larval feeding.
    Dalin P; Björkman C
    Oecologia; 2003 Jan; 134(1):112-8. PubMed ID: 12647188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves.
    Palaniswamy UR; McAvoy RJ; Bible BB; Stuart JD
    J Agric Food Chem; 2003 Aug; 51(18):5504-9. PubMed ID: 12926905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of feeding preference in a leaf beetle: the importance of phenotypic plasticity of a host plant.
    Utsumi S; Ando Y; Ohgushi T
    Ecol Lett; 2009 Sep; 12(9):920-9. PubMed ID: 19624705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts.
    Gökçe A; Isaacs R; Whalon ME
    Pest Manag Sci; 2006 Nov; 62(11):1052-7. PubMed ID: 16886174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation.
    Veteli TO; Tegelberg R; Pusenius J; Sipura M; Julkunen-Tiitto R; Aphalo PJ; Tahvanainen J
    Oecologia; 2003 Oct; 137(2):312-20. PubMed ID: 12908105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition.
    Otte T; Hilker M; Geiselhardt S
    J Chem Ecol; 2015 Jan; 41(1):32-43. PubMed ID: 25516227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy.
    Discher S; Burse A; Tolzin-Banasch K; Heinemann SH; Pasteels JM; Boland W
    Chembiochem; 2009 Sep; 10(13):2223-9. PubMed ID: 19623597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data on the host plant selection of the horseradish flea beetle, Phyllotreta armoraciae (Koch, 1803) (Coleoptera, Chrysomelidae, Alticinae).
    Vig K; Verdyck P
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):277-83. PubMed ID: 12425048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach.
    Søe AR; Bartram S; Gatto N; Boland W
    Isotopes Environ Health Stud; 2004 Sep; 40(3):175-80. PubMed ID: 15370280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).
    Rasmann S; Agrawal AA
    Am Nat; 2011 Jun; 177(6):728-37. PubMed ID: 21597250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae.
    Friedrichs J; Schweiger R; Müller C
    Sci Rep; 2022 Jun; 12(1):10905. PubMed ID: 35764778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense.
    Winter TR; Rostás M
    Environ Pollut; 2008 Sep; 155(2):290-7. PubMed ID: 18166253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.