These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19278914)

  • 1. Invariances, Laplacian-like wavelet bases, and the whitening of fractal processes.
    Tafti PD; Van De Ville D; Unser M
    IEEE Trans Image Process; 2009 Apr; 18(4):689-702. PubMed ID: 19278914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform.
    Unser M; Sage D; Van De Ville D
    IEEE Trans Image Process; 2009 Nov; 18(11):2402-18. PubMed ID: 19605325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotropic polyharmonic B-splines: scaling functions and wavelets.
    Van De Ville D; Blu T; Unser M
    IEEE Trans Image Process; 2005 Nov; 14(11):1798-813. PubMed ID: 16279181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet variance analysis for random fields on a regular lattice.
    Mondal D; Percival DB
    IEEE Trans Image Process; 2012 Feb; 21(2):537-49. PubMed ID: 21859626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of 2-D noisy fractional Brownian motion and its applications using wavelets.
    Liu JC; Hwang WL; Chen MS
    IEEE Trans Image Process; 2000; 9(8):1407-19. PubMed ID: 18262977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended fractal analysis for texture classification and segmentation.
    Kaplan LM
    IEEE Trans Image Process; 1999; 8(11):1572-85. PubMed ID: 18267432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fresnelets: new multiresolution wavelet bases for digital holography.
    Liebling M; Blu T; Unser M
    IEEE Trans Image Process; 2003; 12(1):29-43. PubMed ID: 18237877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains.
    Bullmore E; Long C; Suckling J; Fadili J; Calvert G; Zelaya F; Carpenter TA; Brammer M
    Hum Brain Mapp; 2001 Feb; 12(2):61-78. PubMed ID: 11169871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on "phase-shifting for nonseparable 2-D Haar wavelets".
    Andreopoulos Y
    IEEE Trans Image Process; 2009 Aug; 18(8):1897-8. PubMed ID: 19380267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures.
    Chen W
    Chaos; 2006 Jun; 16(2):023126. PubMed ID: 16822029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode wavelet basis calculations via the molecular self-consistent-field plus configuration-interaction method.
    Griffin CD; Acevedo R; Massey DW; Kinsey JL; Johnson BR
    J Chem Phys; 2006 Apr; 124(13):134105. PubMed ID: 16613447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal characterization of complexity in temporal physiological signals.
    Eke A; Herman P; Kocsis L; Kozak LR
    Physiol Meas; 2002 Feb; 23(1):R1-38. PubMed ID: 11876246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Note on Wavelet-Based Estimator of the Hurst Parameter.
    Wu L
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional non-Brownian motion and trapping-time distributions of grains in rice piles.
    Hopcraft KI; Tanner RM; Jakeman E; Graves JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026121. PubMed ID: 11497665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotation algorithm: generation of Gaussian self-similar stochastic processes.
    Vahabi M; Jafari GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066704. PubMed ID: 23368075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On stationarizability for nonstationary 2-D random fields using discrete wavelet transforms.
    Wu BF; Su YL
    IEEE Trans Image Process; 1998; 7(9):1359-66. PubMed ID: 18276346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of analytical methods for the study of fractional Brownian motion.
    Fischer R; Akay M
    Ann Biomed Eng; 1996; 24(4):537-43. PubMed ID: 8841727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.