BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19278927)

  • 1. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images.
    Garvin MK; Abràmoff MD; Wu X; Russell SR; Burns TL; Sonka M
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1436-47. PubMed ID: 19278927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.
    Garvin MK; Abramoff MD; Kardon R; Russell SR; Wu X; Sonka M
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1495-505. PubMed ID: 18815101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.
    Haeker M; Abràmoff MD; Wu X; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):244-51. PubMed ID: 18051065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of intramacular layers in Fourier domain optical coherence tomography structural images from normal subjects.
    Zhang X; Yousefi S; An L; Wang RK
    J Biomed Opt; 2012 Apr; 17(4):046011. PubMed ID: 22559689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images.
    Haeker M; Wu X; Abràmoff M; Kardon R; Sonka M
    Inf Process Med Imaging; 2007; 20():607-18. PubMed ID: 17633733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints.
    Dufour PA; Ceklic L; Abdillahi H; Schröder S; De Dzanet S; Wolf-Schnurrbusch U; Kowal J
    IEEE Trans Med Imaging; 2013 Mar; 32(3):531-43. PubMed ID: 23086520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography.
    Bogunovic H; Sonka M; Kwon YH; Kemp P; Abramoff MD; Wu X
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2242-53. PubMed ID: 25020067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation of the macula by optical coherence tomography.
    Fabritius T; Makita S; Miura M; Myllylä R; Yasuno Y
    Opt Express; 2009 Aug; 17(18):15659-69. PubMed ID: 19724565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraretinal segmentation on fourier domain optical coherence tomography.
    Huang J; Liu X; Wu Z; Cao D; Sadda S
    Ann Acad Med Singap; 2010 Jul; 39(7):518-7. PubMed ID: 20697669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated layer segmentation of macular OCT images using dual-scale gradient information.
    Yang Q; Reisman CA; Wang Z; Fukuma Y; Hangai M; Yoshimura N; Tomidokoro A; Araie M; Raza AS; Hood DC; Chan K
    Opt Express; 2010 Sep; 18(20):21293-307. PubMed ID: 20941025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.
    Kafieh R; Rabbani H; Abramoff MD; Sonka M
    Med Image Anal; 2013 Dec; 17(8):907-28. PubMed ID: 23837966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
    Tian J; Varga B; Somfai GM; Lee WH; Smiddy WE; DeBuc DC
    PLoS One; 2015; 10(8):e0133908. PubMed ID: 26258430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple layer segmentation and analysis in three-dimensional spectral-domain optical coherence tomography volume scans.
    Hu Z; Wu X; Hariri A; Sadda SR
    J Biomed Opt; 2013 Jul; 18(7):76006. PubMed ID: 23843084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software.
    DeBuc DC; Somfai GM; Ranganathan S; Tátrai E; Ferencz M; Puliafito CA
    J Biomed Opt; 2009; 14(6):064023. PubMed ID: 20059261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments.
    Shi F; Chen X; Zhao H; Zhu W; Xiang D; Gao E; Sonka M; Chen H
    IEEE Trans Med Imaging; 2015 Feb; 34(2):441-52. PubMed ID: 25265605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography.
    Novosel J; Thepass G; Lemij HG; de Boer JF; Vermeer KA; van Vliet LJ
    Med Image Anal; 2015 Dec; 26(1):146-58. PubMed ID: 26401595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images.
    Sun Z; Sun Y
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macular thickness measurements in normal eyes using spectral domain optical coherence tomography.
    Legarreta JE; Gregori G; Punjabi OS; Knighton RW; Lalwani GA; Puliafito CA
    Ophthalmic Surg Lasers Imaging; 2008; 39(4 Suppl):S43-9. PubMed ID: 18777876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.