These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19278958)

  • 1. Reversible phosphorylation of histidine residues in proteins from vertebrates.
    Klumpp S; Krieglstein J
    Sci Signal; 2009 Mar; 2(61):pe13. PubMed ID: 19278958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible histidine phosphorylation in mammalian cells: a teeter-totter formed by nucleoside diphosphate kinase and protein histidine phosphatase 1.
    Wieland T; Hippe HJ; Ludwig K; Zhou XB; Korth M; Klumpp S
    Methods Enzymol; 2010; 471():379-402. PubMed ID: 20946858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleoside diphosphate kinase as protein histidine kinase.
    Attwood PV; Wieland T
    Naunyn Schmiedebergs Arch Pharmacol; 2015 Feb; 388(2):153-60. PubMed ID: 24961462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells.
    Srivastava S; Li Z; Ko K; Choudhury P; Albaqumi M; Johnson AK; Yan Y; Backer JM; Unutmaz D; Coetzee WA; Skolnik EY
    Mol Cell; 2006 Dec; 24(5):665-675. PubMed ID: 17157250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1.
    Srivastava S; Panda S; Li Z; Fuhs SR; Hunter T; Thiele DJ; Hubbard SR; Skolnik EY
    Elife; 2016 Aug; 5():. PubMed ID: 27542194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible phosphorylation of histidine residues in vertebrate proteins.
    Klumpp S; Krieglstein J
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):291-5. PubMed ID: 16194631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1.
    Srivastava S; Zhdanova O; Di L; Li Z; Albaqumi M; Wulff H; Skolnik EY
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14442-6. PubMed ID: 18796614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of PGAM5 as a Mammalian Protein Histidine Phosphatase that Plays a Central Role to Negatively Regulate CD4(+) T Cells.
    Panda S; Srivastava S; Li Z; Vaeth M; Fuhs SR; Hunter T; Skolnik EY
    Mol Cell; 2016 Aug; 63(3):457-69. PubMed ID: 27453048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer.
    Steeg PS; Palmieri D; Ouatas T; Salerno M
    Cancer Lett; 2003 Feb; 190(1):1-12. PubMed ID: 12536071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease.
    Wieland T; Attwood PV
    Front Pharmacol; 2015; 6():173. PubMed ID: 26347652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian histidine kinases.
    Besant PG; Attwood PV
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):281-90. PubMed ID: 16188507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell.
    Kowluru A
    J Cell Mol Med; 2008 Oct; 12(5B):1885-908. PubMed ID: 18400053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFTR, chloride concentration and cell volume: could mammalian protein histidine phosphorylation play a latent role?
    Treharne KJ; Crawford RM; Mehta A
    Exp Physiol; 2006 Jan; 91(1):131-9. PubMed ID: 16219660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the epithelial Ca²⁺ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1.
    Cai X; Srivastava S; Surindran S; Li Z; Skolnik EY
    Mol Biol Cell; 2014 Apr; 25(8):1244-50. PubMed ID: 24523290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries.
    Zhou XB; Feng YX; Sun Q; Lukowski R; Qiu Y; Spiger K; Li Z; Ruth P; Korth M; Skolnik EY; Borggrefe M; Dobrev D; Wieland T
    Arterioscler Thromb Vasc Biol; 2015 Aug; 35(8):1852-61. PubMed ID: 26088577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells.
    Srivastava S; Di L; Zhdanova O; Li Z; Vardhana S; Wan Q; Yan Y; Varma R; Backer J; Wulff H; Dustin ML; Skolnik EY
    Mol Biol Cell; 2009 Sep; 20(17):3783-91. PubMed ID: 19587117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases.
    Attwood PV; Muimo R
    Lab Invest; 2018 Mar; 98(3):283-290. PubMed ID: 29200201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophosphorylation of Arabidopsis nucleoside diphosphate kinase 2 occurs only on its active histidine residue.
    Shen Y; Kim JI; Song PS
    Biochemistry; 2006 Feb; 45(6):1946-9. PubMed ID: 16460041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase.
    Biondi RM; Walz K; Issinger OG; Engel M; Passeron S
    Anal Biochem; 1996 Nov; 242(2):165-71. PubMed ID: 8937558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective protein histidine phosphorylation in islets from the Goto-Kakizaki diabetic rat.
    Kowluru A
    Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E498-503. PubMed ID: 12799314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.