BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19278963)

  • 1. Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy.
    Nowak D; Le Toriellec E; Stern MH; Kawamata N; Akagi T; Dyer MJ; Hofmann WK; Ogawa S; Koeffler HP
    Haematologica; 2009 Apr; 94(4):518-27. PubMed ID: 19278963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32).
    Dürig J; Bug S; Klein-Hitpass L; Boes T; Jöns T; Martin-Subero JI; Harder L; Baudis M; Dührsen U; Siebert R
    Leukemia; 2007 Oct; 21(10):2153-63. PubMed ID: 17713554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays.
    Wang L; Fidler C; Nadig N; Giagounidis A; Della Porta MG; Malcovati L; Killick S; Gattermann N; Aul C; Boultwood J; Wainscoat JS
    Haematologica; 2008 Jul; 93(7):994-1000. PubMed ID: 18508791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent occurrence of uniparental disomy in colorectal cancer.
    Andersen CL; Wiuf C; Kruhøffer M; Korsgaard M; Laurberg S; Ørntoft TF
    Carcinogenesis; 2007 Jan; 28(1):38-48. PubMed ID: 16774939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-Cell Prolymphocytic Leukemia With t(X;14)(q28;q11.2): A Clinicopathologic Study of 15 Cases.
    Hu Z; Medeiros LJ; Xu M; Yuan J; Peker D; Shao L; Tang Z; Mai B; Thakral B; Rios A; Hu S; Wang W
    Am J Clin Pathol; 2023 Apr; 159(4):325-336. PubMed ID: 36883805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of rearranged T-cell receptor loci by whole genome and transcriptome sequencing gives insights into the initial steps of T-cell prolymphocytic leukemia.
    Patil P; Cieslak A; Bernhart SH; Toprak UH; Wagener R; López C; Wiehle L; Bens S; Altmüller J; Franitza M; Scholz I; Jayne S; Ahearne MJ; Scheffold A; Jebaraj BMC; Schneider C; Costa D; Braun T; Schrader A; Campo E; Dyer MJS; Nürnberg P; Dürig J; Johansson P; Böttcher S; Schlesner M; Herling M; Stilgenbauer S; Macintyre E; Siebert R
    Genes Chromosomes Cancer; 2020 Apr; 59(4):261-267. PubMed ID: 31677197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis.
    Bullinger L; Krönke J; Schön C; Radtke I; Urlbauer K; Botzenhardt U; Gaidzik V; Carió A; Senger C; Schlenk RF; Downing JR; Holzmann K; Döhner K; Döhner H
    Leukemia; 2010 Feb; 24(2):438-49. PubMed ID: 20016533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic significance of cytogenetic abnormalities in T-cell prolymphocytic leukemia.
    Hu Z; Medeiros LJ; Fang L; Sun Y; Tang Z; Tang G; Sun T; Quesada AE; Hu S; Wang SA; Pei L; Lu X
    Am J Hematol; 2017 May; 92(5):441-447. PubMed ID: 28194886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11.
    Flotho C; Steinemann D; Mullighan CG; Neale G; Mayer K; Kratz CP; Schlegelberger B; Downing JR; Niemeyer CM
    Oncogene; 2007 Aug; 26(39):5816-21. PubMed ID: 17353900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia.
    Soulier J; Pierron G; Vecchione D; Garand R; Brizard F; Sigaux F; Stern MH; Aurias A
    Genes Chromosomes Cancer; 2001 Jul; 31(3):248-54. PubMed ID: 11391795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia.
    Kawamata N; Ogawa S; Seeger K; Kirschner-Schwabe R; Huynh T; Chen J; Megrabian N; Harbott J; Zimmermann M; Henze G; Schrappe M; Bartram CR; Koeffler HP
    Int J Oncol; 2009 Jun; 34(6):1603-12. PubMed ID: 19424578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia.
    Lehmann S; Ogawa S; Raynaud SD; Sanada M; Nannya Y; Ticchioni M; Bastard C; Kawamata N; Koeffler HP
    Cancer; 2008 Mar; 112(6):1296-305. PubMed ID: 18246537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization.
    Maljaei SH; Brito-Babapulle V; Hiorns LR; Catovsky D
    Cancer Genet Cytogenet; 1998 Jun; 103(2):110-6. PubMed ID: 9614908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Array-based karyotyping for prognostic assessment in chronic lymphocytic leukemia: performance comparison of Affymetrix 10K2.0, 250K Nsp, and SNP6.0 arrays.
    Hagenkord JM; Monzon FA; Kash SF; Lilleberg S; Xie Q; Kant JA
    J Mol Diagn; 2010 Mar; 12(2):184-96. PubMed ID: 20075210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cell prolymphocytic leukemia with new chromosome rearrangements.
    Zver S; Kokalj Vokac N; Zagradisnik B; Erjavec A; Zagorac A; Zupan IP; Cernelc P
    Acta Haematol; 2004; 111(3):168-70. PubMed ID: 15034240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent loss, but lack of mutations, of the SMARCB1 tumor suppressor gene in T-cell prolymphocytic leukemia with TCL1A-TCRAD juxtaposition.
    Bug S; Dürig J; Oyen F; Klein-Hitpass L; Martin-Subero JI; Harder L; Baudis M; Arnold N; Kordes U; Dührsen U; Schneppenheim R; Siebert R
    Cancer Genet Cytogenet; 2009 Jul; 192(1):44-7. PubMed ID: 19480937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-nucleotide polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia.
    Costa AR; Vasudevan A; Krepischi A; Rosenberg C; Chauffaille Mde L
    Med Oncol; 2013; 30(2):579. PubMed ID: 23636907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple karyotypic abnormalities in three cases of small cell variant of T-cell prolymphocytic leukemia.
    Heinonen K; Mahlamäki E; Hämäläinen E; Nousiainen T; Mononen I
    Cancer Genet Cytogenet; 1994 Nov; 78(1):28-35. PubMed ID: 7987802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies.
    Dunbar AJ; Gondek LP; O'Keefe CL; Makishima H; Rataul MS; Szpurka H; Sekeres MA; Wang XF; McDevitt MA; Maciejewski JP
    Cancer Res; 2008 Dec; 68(24):10349-57. PubMed ID: 19074904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD.
    Gondek LP; Dunbar AJ; Szpurka H; McDevitt MA; Maciejewski JP
    PLoS One; 2007 Nov; 2(11):e1225. PubMed ID: 18030353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.