BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19279138)

  • 21. Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo.
    Takesono A; Moger J; Farooq S; Cartwright E; Dawid IB; Wilson SW; Kudoh T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3371-6. PubMed ID: 22331904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay.
    Chen GD; Chou CM; Hwang SP; Wang FF; Chen YC; Hung CC; Chen JY; Huang CJ
    Biochem Biophys Res Commun; 2006 May; 344(1):272-82. PubMed ID: 16616005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish Angiotensin II Receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia.
    Tucker B; Hepperle C; Kortschak D; Rainbird B; Wells S; Oates AC; Lardelli M
    Gene Expr Patterns; 2007 Jan; 7(3):258-65. PubMed ID: 17085078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initiation of convergence and extension movements of lateral mesoderm during zebrafish gastrulation.
    Sepich DS; Calmelet C; Kiskowski M; Solnica-Krezel L
    Dev Dyn; 2005 Oct; 234(2):279-92. PubMed ID: 16127722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphofunctional transformations of the yolk syncytial layer during zebrafish development.
    Kondakova EA; Efremov VI
    J Morphol; 2014 Feb; 275(2):206-16. PubMed ID: 24122838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio).
    Janik M; Kleinhans FW; Hagedorn M
    Cryobiology; 2000 Aug; 41(1):25-34. PubMed ID: 11017758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing E-cadherin endocytosis by morpholino-mediated Rab5 knockdown in zebrafish.
    Ulrich F; Heisenberg CP
    Methods Mol Biol; 2008; 440():371-87. PubMed ID: 18369959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential expression of zebrafish gpia and gpib during development.
    Lin WW; Chen LH; Chen MC; Kao HW
    Gene Expr Patterns; 2009 Apr; 9(4):238-45. PubMed ID: 19166981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental expression of aquaporin-3 in zebrafish embryos (Danio rerio).
    Lance SL; Peterson AS; Hagedorn M
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Jul; 138(3):251-8. PubMed ID: 15533783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae).
    Ninhaus-Silveira A; Foresti F; de Azevedo A; Agostinho CA; Veríssimo-Silveira R
    Zygote; 2007 Aug; 15(3):267-71. PubMed ID: 17637108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain.
    Wada H; Tanaka H; Nakayama S; Iwasaki M; Okamoto H
    Development; 2006 Dec; 133(23):4749-59. PubMed ID: 17079269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement.
    Pézeron G; Mourrain P; Courty S; Ghislain J; Becker TS; Rosa FM; David NB
    Curr Biol; 2008 Feb; 18(4):276-81. PubMed ID: 18291651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy.
    Puech PH; Taubenberger A; Ulrich F; Krieg M; Muller DJ; Heisenberg CP
    J Cell Sci; 2005 Sep; 118(Pt 18):4199-206. PubMed ID: 16155253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of axis induction mutant embryos reveals morphogenetic events associated with zebrafish yolk extension formation.
    Lyman Gingerich J; Lindeman R; Putiri E; Stolzmann K; Pelegri F
    Dev Dyn; 2006 Oct; 235(10):2749-60. PubMed ID: 16894597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ signalling and early embryonic patterning during zebrafish development.
    Webb SE; Miller AL
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):897-904. PubMed ID: 17645637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors.
    Kawahara A; Nishi T; Hisano Y; Fukui H; Yamaguchi A; Mochizuki N
    Science; 2009 Jan; 323(5913):524-7. PubMed ID: 19074308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the iroquois3 homeobox gene in organizer formation.
    Kudoh T; Dawid IB
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7852-7. PubMed ID: 11438735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish Danio rerio) embryos.
    Williams DW; Müller F; Lavender FL; Orbán L; Maclean N
    Transgenic Res; 1996 Nov; 5(6):433-42. PubMed ID: 8840526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish R-cadherin (Cdh4) controls visual system development and differentiation.
    Babb SG; Kotradi SM; Shah B; Chiappini-Williamson C; Bell LN; Schmeiser G; Chen E; Liu Q; Marrs JA
    Dev Dyn; 2005 Jul; 233(3):930-45. PubMed ID: 15918170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The genetics and embryology of zebrafish metamerism.
    Holley SA
    Dev Dyn; 2007 Jun; 236(6):1422-49. PubMed ID: 17486630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.