These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19279161)

  • 21. Comparison of sampling positions when measuring personal exposure to solder fume.
    Simpson AT
    Ann Occup Hyg; 2005 Jul; 49(5):439-42. PubMed ID: 15689396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABIE and Perkin Elmer passive sampler performance under fluctuating concentration conditions.
    Langlois E
    Ann Occup Hyg; 2008 Jun; 52(4):239-47. PubMed ID: 18445578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-separated sampling and analysis of isocyanates in workplace aerosols--Part II: aging of aerosols from thermal degradation of polyurethane.
    Dahlin J; Spanne M; Dalene M; Karlsson D; Skarping G
    Ann Occup Hyg; 2008 Jul; 52(5):375-83. PubMed ID: 18448445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtration of dust particulates with a moving granular bed filter.
    Chen YS; Hsiau SS; Lai SC; Chyou YP; Li HY; Hsu CJ
    J Hazard Mater; 2009 Nov; 171(1-3):987-94. PubMed ID: 19615817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and computational fluid dynamics investigation of a personal, high flow inhalable sampler.
    Anthony TR; Landázuri AC; Van Dyke M; Volckens J
    Ann Occup Hyg; 2010 Jun; 54(4):427-42. PubMed ID: 20418278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a personal bioaerosol sampler based on a conical cyclone with recirculating liquid film.
    Tolchinsky AD; Sigaev VI; Sigaev GI; Varfolomeev AN; Zvyagina EV; Brasel T; Cheng YS
    J Occup Environ Hyg; 2010 Mar; 7(3):156-62. PubMed ID: 20017057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.
    Lin C; Solera Garcia MA; Timmis R; Jones KC
    J Environ Monit; 2011 Mar; 13(3):753-61. PubMed ID: 21321740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive aerosol sampler for particle concentrations and size distributions.
    Whitehead T; Leith D
    J Environ Monit; 2008 Mar; 10(3):331-5. PubMed ID: 18392275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A transient model of mass transfer and kinetics in a passive vapor sampler.
    Williams CE; Pintauro PN; Rando RJ
    Am Ind Hyg Assoc J; 1995 Nov; 56(11):1074-82. PubMed ID: 7502993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the CATHIA-T sampler, the GK2.69 cyclone and the standard cowled sampler for thoracic fiber concentrations at a Taconite (iron ore)-processing mill.
    Lee EG; Harper M; Nelson J; Hintz PJ; Andrew ME
    Ann Occup Hyg; 2008 Jan; 52(1):55-62. PubMed ID: 18195326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
    Welling I; Lehtimäki M; Rautio S; Lähde T; Enbom S; Hynynen P; Hämeri K
    J Occup Environ Hyg; 2009 Feb; 6(2):90-8. PubMed ID: 19065389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a high-volume air sampler for nanoparticles.
    Hata M; Thongyen T; Bao L; Hoshino A; Otani Y; Ikeda T; Furuuchi M
    Environ Sci Process Impacts; 2013 Feb; 15(2):454-62. PubMed ID: 25208710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic effects in asbestos sampling. II: Comparison of theory and experiment.
    Baron PA; Deye GJ
    Am Ind Hyg Assoc J; 1990 Feb; 51(2):63-9. PubMed ID: 2305675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the dialdehyde glyoxal in workroom air-development of personal sampling methodology.
    Olsen R; Thorud S; Hersson M; Ovrebø S; Lundanes E; Greibrokk T; Ellingsen DG; Thomassen Y; Molander P
    J Environ Monit; 2007 Jul; 9(7):687-94. PubMed ID: 17607389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling.
    Lindsley WG; Schmechel D; Chen BT
    J Environ Monit; 2006 Nov; 8(11):1136-42. PubMed ID: 17075620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a thoracic personal sampler system for co-sampling of sulfuric acid mist and sulfur dioxide gas.
    Chien CH; Theodore A; Zhou C; Wu CY; Hsu YM; Birky B
    J Occup Environ Hyg; 2017 Jul; 14(7):562-571. PubMed ID: 28426290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New experimental studies of the basic performance characteristics of aerosol samplers.
    Sreenath A; Vincent JH; Ramachandran G
    Appl Occup Environ Hyg; 1999 Sep; 14(9):624-31. PubMed ID: 10510525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of air sampling strategies for monitoring common air pollutants in a mission area at Camp Victoria in Kosovo--stationary vs. personal monitoring.
    Wingfors H; Hägglund L; Magnusson R; Höjer K
    J Occup Environ Hyg; 2009 Jun; 6(6):332-40. PubMed ID: 19296348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical determination of personal aerosol sampler aspiration efficiency.
    Lo Savio S; Paradisi P; Tampieri F; Belosi F; Morigi MP; Agostini S
    Appl Occup Environ Hyg; 2003 Apr; 18(4):244-55. PubMed ID: 12637235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.
    Chaemfa C; Wild E; Davison B; Barber JL; Jones KC
    J Environ Monit; 2009 Jun; 11(6):1135-9. PubMed ID: 19513443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.