These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 19279190)

  • 21. Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2.
    Anderson HJ; Vonarx EJ; Pastushok L; Nakagawa M; Katafuchi A; Gruz P; Di Rubbo A; Grice DM; Osmond MJ; Sakamoto AN; Nohmi T; Xiao W; Kunz BA
    Plant J; 2008 Sep; 55(6):895-908. PubMed ID: 18494853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.
    Stodola JL; Stith CM; Burgers PM
    J Biol Chem; 2016 May; 291(22):11698-705. PubMed ID: 27072134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.
    Sharma NM; Kochenova OV; Shcherbakova PV
    J Biol Chem; 2011 Sep; 286(38):33557-66. PubMed ID: 21799021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.
    Hendel A; Krijger PH; Diamant N; Goren Z; Langerak P; Kim J; Reissner T; Lee KY; Geacintov NE; Carell T; Myung K; Tateishi S; D'Andrea A; Jacobs H; Livneh Z
    PLoS Genet; 2011 Sep; 7(9):e1002262. PubMed ID: 21931560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA.
    Li M; Larsen L; Hedglin M
    Biochemistry; 2020 Feb; 59(4):407-416. PubMed ID: 31887036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity.
    Niimi A; Limsirichaikul S; Yoshida S; Iwai S; Masutani C; Hanaoka F; Kool ET; Nishiyama Y; Suzuki M
    Mol Cell Biol; 2004 Apr; 24(7):2734-46. PubMed ID: 15024063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA.
    Kanao R; Masutani C
    Mutat Res; 2017 Oct; 803-805():82-88. PubMed ID: 28666590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel function of DNA polymerase zeta regulated by PCNA.
    Northam MR; Garg P; Baitin DM; Burgers PM; Shcherbakova PV
    EMBO J; 2006 Sep; 25(18):4316-25. PubMed ID: 16957771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage.
    Wit N; Buoninfante OA; van den Berk PC; Jansen JG; Hogenbirk MA; de Wind N; Jacobs H
    Nucleic Acids Res; 2015 Jan; 43(1):282-94. PubMed ID: 25505145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination.
    Chen CC; Motegi A; Hasegawa Y; Myung K; Kolodner R; D'Andrea A
    DNA Repair (Amst); 2006 Dec; 5(12):1475-88. PubMed ID: 16990054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rad5 Recruits Error-Prone DNA Polymerases for Mutagenic Repair of ssDNA Gaps on Undamaged Templates.
    Gallo D; Kim T; Szakal B; Saayman X; Narula A; Park Y; Branzei D; Zhang Z; Brown GW
    Mol Cell; 2019 Mar; 73(5):900-914.e9. PubMed ID: 30733119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae.
    Haracska L; Torres-Ramos CA; Johnson RE; Prakash S; Prakash L
    Mol Cell Biol; 2004 May; 24(10):4267-74. PubMed ID: 15121847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites.
    Guérillon C; Smedegaard S; Hendriks IA; Nielsen ML; Mailand N
    J Biol Chem; 2020 Jun; 295(25):8350-8362. PubMed ID: 32350109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta.
    Garg P; Stith CM; Majka J; Burgers PM
    J Biol Chem; 2005 Jun; 280(25):23446-50. PubMed ID: 15879599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.
    Stelter P; Ulrich HD
    Nature; 2003 Sep; 425(6954):188-91. PubMed ID: 12968183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast DNA polymerase η possesses two PIP-like motifs that bind PCNA and Rad6-Rad18 with different specificities.
    Ripley BM; Reusch DT; Washington MT
    DNA Repair (Amst); 2020 Nov; 95():102968. PubMed ID: 32932109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins.
    Zhong X; Garg P; Stith CM; Nick McElhinny SA; Kissling GE; Burgers PM; Kunkel TA
    Nucleic Acids Res; 2006; 34(17):4731-42. PubMed ID: 16971464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of oxidative metabolism on spontaneous Pol zeta-dependent translesion synthesis in Saccharomyces cerevisiae.
    Minesinger BK; Abdulovic AL; Ou TM; Jinks-Robertson S
    DNA Repair (Amst); 2006 Feb; 5(2):226-34. PubMed ID: 16290107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.